БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

слабо (см. Гидрофильность и гидрофобностъ). Г. п. в виде мономолекулярных слоев (адсорбционных ориентированных слоев толщиной в одну молекулу) или плёнок типа лаковой получают обработкой материала растворами, эмульсиями пли (реже) парами гпдрофобнзаторов - веществ, слабо взаимодействующих с водой, но прочно удерживающихся на поверхности. В качестве гпдрофобизаторов применяют соли жирных кислот и таких металлов, как медь, алюминий, цирконий и др., катионоактивные поверхностно-активные вещества, низко- и высокомолекулярные кремнийорганич. и фтор-органнч. соединения.

Г. п. служат для защиты различных материалов (металла, древесины, пластмасс, кожи, тканых и нетканых волокнистых материалов) от разрушающего действия воды или намокания. Особенно широко их применяют в машиностроении, строительстве и текст, произ-ве.

ГИДРОФОБНЫЙ ЦЕМЕНТ, гидрофобный портландцемент, гидравлическое вяжущее вещество, получаемое в результате тонкого измельчения портландцементного клинкера (см. Портландцемент) совместно с гипсом и гидрофобизующей добавкой (асидол, мылонафт, олеиновая кислота, окисленный петролатум, кубовые остатки синте-тич. жирных кислот и др.). Добавка, вводимая в количестве 0,1-0,3% от массы цемента, образует на поверхности его частиц тончайшие (мономолекулярные) гидрофобные плёнки, уменьшающие гигроскопичность цемента и поэтому предохраняющие его от порчи при длительном хранении даже в условиях повышенной влажности. Бетоны и растворы на Г. ц. отличаются меньшим водопоглощепием, большей морозостойкостью и водонепроницаемостью, чем на обычном цементе. Наряду с портландцементом, можно гид-рофобизировать также шлаковые, глиноземистые и др. виды цемента.

М. И. Хигерович.

ГИДРОФОН (от гидро... и греч. phone- звук), гидроакустический звукоприёмник. Г. являются электроакустическими преобразователями и применяются в гидроакустике для прослушивания подводных сигналов и шумов, для измерит, целей, а также как составные элементы направленных приёмных гидроакустич. антенн. Наиболее распространены Г., основанные на электродинамич., пьезоэлектрич. и магнитострикционном эффектах. Электродинамич. Г. по принципу действия не отличаются от возд. электродинамич. микрофонов, если не считать особенностей конструкции, связанных с изоляцией от воды.

В пьезоэлектрич. Г. используется прямой пьезоэффект (см. Пьезоэлектричество) нек-рых кристаллов (сегнетова соль, кварц, дигидрофосфат аммония, сульфат лития и т. д.), при к-ром переменная деформация кристалла вызывает появление переменных поверхностных электрич. зарядов и соответственно переменной электродвижущей силы на электродах-обкладках. Широко пользуются пьезоэлектрич. керамич. материалами (типа керамики титаната бария, титаната-цирко-иата свинца и др.). Чувствит. элементы пьезоэлектрич. Г. изготавливают в виде пакетов прямоугольной или цилиндрической формы.

Магнитострикционные Г. основаны на обратном магнитострикционном эффекте (см. Магнитострикция) нек-рых ферромагнитных металлов (в основном никеля и его сплавов), при к-ром деформация вызывает появление переменной магнитной индукции в магнитопроводе и как следствие - переменной эдс на обмотке. Чувствит. элементы Г. (сердечники) набираются, как правило, из тонких пластин для избежания потерь на токи Фуко (см. Вихревые токи).

Г., предназначенные для измерит, целей, должны быть ненаправленными и обладать ровной частотной характеристикой во всей области исследуемых частот. Для этой цели удобно пользоваться малыми по сравнению с длиной волны полыми сферич. приёмниками из пьезокерамики, совершающими сферические симметричные колебания.

Одна из важнейших характеристик Г.- чувствительность, представляющая собой отношение электрич. напряжения к звуковому давлению в мкв/бар', она лежит в пределах от долей мкв/бар для малых (диаметром в неск. мм) керамических сферических приёмников до сотен мкв/бар для пакетов из пьезоэлектрических кристаллов. Для увеличения чувствительности (а также для устранения шунтирующего действия кабеля) пользуются Г. с предварит, усилителями, к-рые монтируются в одном корпусе с приёмником и вместе опускаются в воду.

Лит.: Тюрин А. М., Сташкевич А. П., Таранов Э. С., Основы гидроакустики, Л., 1966. Б. Ф. Куръянов.

ГИДРОФОРМИНГ, один из способов переработки нефтепродуктов. См. Ри-форминг.

ГИДРОФТАЛЬМ (от гидро... и греч. ophthalmos - глаз), водянка гла-з а, увеличение у детей глазного яблока при врождённой глаукоме.

ГИДРОХИМИЯ, наука о хим. составе природных вод и закономерностях его изменения в зависимости от хим., физ. и биол. процессов, протекающих в окружающей среде. Г. как наука о химии гидросферы является частью геохимии и одновременно частью гидрологии. Г. имеет большое значение для развития ряда смежных наук: петрографии, минералогии, почвоведения, гидрогеологии, гидробиологии и др. Знание хим. состава воды (определяющего её качество) необходимо для таких областей практич. деятельности, как водоснабжение, орошение, рыбное х-во; гидрохим. сведения важны для оценки коррозии строит, материалов (бетон, металлы), для характеристик минеральных вод, при поисках полезных ископаемых (нефть, рудные месторождения, радиоактивные вещества) и т. д. Изучение хим. состава воды приобретает громадное значение при борьбе с загрязнением водоёмов сточными водами. В России начало изучения Г. связано с работами М. В. Ломоносова и т. и. академическими экспедициями 18 в. Теперь изучение хим. состава воды ведётся в различных науч. и высших уч. заведениях, в лабораториях предприятий пром-сти и транспорта, в сан. и гигиенич. учреждениях и инспекциях, в лабораториях системы водоснабжения. Особенно важны стационарные гидрохимические работы, проводимые на станциях (морских, речных, озёрных) гидрометеорологич. сети Гид-рометслужбы. В СССР издано большое число науч. работ по Г., существует постоянный печатный орган ;Гидрохимические материалы; (с 1915); в 1921 создан единственный в мире Н.-и. ин-т гидрохимии, в соответствующих вузах читается курс Г.

На совр. этапе развития Г. можно различать след, её разделы: 1) Формирование хим. состава природных вод. Этот раздел включает изучение воды как растворителя сложного комплекса минералов земной коры и исследование хим. процессов, происходящих в воде при взаимодействии с породами, почвами, организмами и атмосферой. Рассматривается растворимость веществ, встречающихся в природе, их состояние в растворе и стабильность, а также сорбционные, обменные, окислителыю-восстановит. процессы и мн. др. К этому разделу, весьма близкому геохимии, следует отнести общие вопросы круговорота веществ и вопросы миграции элементов в гидросфере.

2) Хим. состав и гидрохим. режим определённых видов природных вод, зависимость их изменений от физико-геогр. условий окружающей среды. Этот обширный раздел близко примыкает к гидрологии, и его частями являются химия рек и озёр, химия моря, химия подземных и атм. вод.

Химия поверхностных вод изучает хим. состав воды в реках, озёрах, искусств, водоёмах, его изменения по терр. или акватории и по глубинам, сезонные суточные колебания, а также условия формирования состава в зависимости от окружающей среды. Большое значение приобретает прогнозирование хим. состава водохранилищ, создаваемых в засушливых областях, и борьба с загрязнениями, вносимыми в водоёмы. Исследования соляных озёр, богатых минеральным сырьём, очень важны для хим. пром-сти.

Химия моря, тесно примыкающая к океанологии, наряду с изучением солёности, биогенных веществ и растворённых газов в зависимости от гидродинамич., гидрометеорологич. и гидробиологич. факторов, изучает формы и содержание микроэлементов, генезис и процессы метаморфизации органич. веществ, процессы взаимодействия мор. воды с речной и мор. донными осадками и пр.

Химия подземных вод включает изучение хим. состава грунтовых, пластовых, артезианских, минеральных вод и вод нефтяных месторождений. Важнейшие направления здесь - формирование состава вод, процессы взаимодействия воды с окружающими породами, происходящие под высокими давлениями и часто повышенными темп-рами при замедленном водообмене и своеобразных микробиол. условиях. Большое значение издавна имеет изучение минеральных вод, весьма разнообразных по составу и происхождению.

3) Методика гидрохим. исследований. Этот раздел является спец. ветвью аналитической химии, применительно к специфике анализа природных вод. В настоящее время в Г. широко применяются методы спектроскопии, хроматографии, полярографии, меченых атомов и др. физико-хим. методы. Большой раздел анализа - определение компонентов загрязнений воды.

Лит.: Алекин О. А., Основы гидрохимии, Л., 1953; его же, Химия океана, Л., 1966; его же, Гидрохимия за 50 лет, ;Гидрохимические материалы;, 1968, т. 46; Вернадский В. И., Избр. соч., т. 4, кн. 2 - История природных вод, М., 1960; Виноградов А. П.. Введение в геохимию океана, М., 1967; Приёмы санитарного изучения водоёмов, под ред. С. М. Драчева, М., 1960; Драчев С. М., Борьба с загрязнением рек, озёр и водохранилищ промышленными и бытовыми стоками, М. - Л., 1964; Химический состав атмосферных осадков на Европейской территории СССР, под ред. Е. С. Селезнёвой, Л., 1964; Резников А. А., Муликовская Е. П., Соколов И. Ю., Методы анализа природных вод, М., 1963: Овчинников А. М., Гидрогеохимия, М., 1970.

О. А. Алекин.

ГИДРОХИНОН, n-диксибензол, бесцветные кристаллы, с„л 170,3 °С; плотность 1,358 г/см3', возгоняется в вакууме. Г. хорошо растворим в спирте, эфире, плохо- в бензоле; 5,7 г Г. растворяется в 100 г воды при 15;С. Г.- сильный восстановитель; в вод-

ных, особенно в щелочных, растворах окисляется кислородом воздуха. В пром-сти Г. получают восстановлением хинона, а также щелочным плавлением и-фенолсульфокислоты n-Бензохинон. или и-хлорфенола.

Г. применяют как проявитель в фотографии, как антиоксидант. Г. служит полупродуктом в синтезе многих органич. красителей. Его применяют в аналитич. химии при фотометрич. определении ряда элементов. Молекулярное соединение Г. гидрон, применяют при определении кенцентрации водородных ионов. Соединение Г. с глюкозой-арбутин - широко распространено в природе. Г. впервые получен нем. химиком Ф. Вёлером в 1844.

ГИДРОХОРИЯ (от гидро... и греч. cho-гёо - продвигаюсь, распространяюсь), распространение плодов, семян и др. зачатков растений водными течениями. Г. характерна преим. для болотных и водных растений, водорослей и нек-рых грибов. Приспособлениями для такого способа переноса служат различные вздутия и выросты на плодовых или семенных оболочках (или особые клетки - в спорах грибов), наполненные воздухом и действующие как плавательные пузыри. Г. наблюдается у частухи, стрелолиста, сусака, ежеголовника, рдеста и др.

ГИДРОЦЕЛЕ (от гидро... и греч. kele- опухоль), водянка яичка, скопление серозной жидкости в оболочках яичка, возникающее вследствие

затруднения оттока её по лимфатич. сосудам. Может быть врождённым или возникать при воспалит, заболеваниях яичка (см. Орхит), его придатков (см. Эпиди-димит), семенного канатика, при травмах или новообразованиях. Развитию Г. способствуют паховые грыжи и расширение вен семенного канатика. Лечение: при остром Г., не сопровождающемся сильными болями и повышением темп-ры тела, - устранение осн. заболевания; при хронич. Г.- хирургич. вмешательство.

ГИДРОЦЕФАЛИЯ (от гидро... и греч. kephale - голова), водянка мозга, головная водянка, чрезмерное увеличение количества спинномозговой жидкости в полости черепа. Причина Г.- либо избыточная продукция спинномозговой жидкости в головном мозге, либо затруднение её оттока из мозговых желудочков вследствие воспалит, процессов, при опухолях и др. заболеваниях, приводящих к закрытию отверстий, через к-рые жидкость выходит из желудочков. Врождённая Г. обусловлена врождённым сифилисом, токсоплазмозом; приобретённая Г. возникает (обычно в раннем детстве) после перенесённых менингитов, менингоэнце-фалитов, травм головы, интоксикаций и др. Наиболее постоянный признак Г. у детей - увеличенный в объёме череп. В местах, где не произошло нормального срастания костей черепа, могут образоваться округлые пульсирующие выпячивания. Нередко бывает косоглазие и нистагм. Иногда отмечаются снижение зрения и слуха, головные боли, тошнота. Интеллект снижен. Лечение: устранение причины, вызвавшей Г.; иногда - хирургич. операция. Профилактика: устранение вредностей, действующих на мать во время беременности, и предупреждение нейроинфекций в детском возрасте.

Лит.: Арендт А. А., Гидроцефалия и её хирургическое лечение, М., 1948.

В. С. Ротенберг.

ГИДРОЦИКЛОН (от гидро... и греч. kyklon - вращающийся), аппарат для разделения в водной среде зёрен минералов, отличающихся значением массы. Различают Г. классификаторы, сепараторы и сгустители. Классификаторы применяются для разделения зёрен по крупности, сгустители - для отделения части воды от зёрен и сепараторы - для обогащения полезных ископаемых в минеральных суспензиях. Г. представляет собой конус / (рис., а) с короткой цилиндрич. частью 2, имеющей питающий патрубок 3, по к-рому подаётся гидросмесь, и сливное отверстие 4. У конич. части предусмотрена насадка 5, через к-рую разгружается нижний продукт разделения. Питающий патрубок расположен таким образом, что пульпа вводится в Г. по касательной и вращается в нём с образованием внеш. и внутр. потоков (рис., б). Твёрдые частицы подвергаются воздействию центробежной силы и отбрасываются к периферии. Чем больше масса зерна, тем дальше оно будет отброшено. Зёрна, имеющие большую массу, чем граничные зёрна, по к-рым производится разделение, остаются во внеш. потоке и, перемещаясь к вершине конуса, разгружаются через насадку. Зёрна с меньшей массой попадают во внутр. поток и выносятся через сливное отверстие.

Ввиду простоты конструкции Г. находят всё большее применение в пром-сти. Их совершенствование выражается также в применении сочетания неск. Г. с получением различных продуктов и в автоматическом регулировании процесса разделения зёрен. Впервые Г. применён в 1939 на углеобогатит. фабрике в Голландии. Серийное производство Г. в СССР начато в 1956.

Лит.: Поваров А. И., Гидроциклоны, М., 1961. М.Г.Акопов.

ГИДРОЦИЛИНДР силовой, гидравлический двигатель с возвратно-по-ступат. движением поршня. Широко применяется для привода главного движения станков, перемещения рабочих органов навесных, строит., дорожных и с.-х. машин, в нажимных устройствах прокатных станов, в системах регулирования для перемещения органов управления и т. д. (См. Гидропередача объёмная и Гидропривод машин.)

ГИДРОЭКСТРУЗИЯ, то же, что гидростатическое прессование.

ГИДРОЭЛЕВАТОР (от гидро... и элеватор), насос струйного типа для подъёма и перемещения по трубопроводу жидкостей и гидросмесей. Работа Г. основана на использовании энергии струи воды, подводимой к насадке под напором. Проходя с большой скоростью через проточную часть Г. (рис.), струя воды создаёт при вылете из насадки перепад давления. Это вызывает поступление в смесит, камеру Г. транспортируемого материала. Из смесит, камеры струя рабочей жидкости увлекает образующуюся гидросмесь в диффузор. В диффузоре скорость движения гидросмеси снижается, но повышается её давление за счёт перехода части кинетич. энергии струи в потенц. энергию потока, чем и обеспечивается перемещение гидросмеси по трубопроводам. Г. не имеет движущихся частей и прост в конструктивном исполнении, но его кпд не превышает 20-25%.

Схема гидроэлеватора: 1 - нагнетательный трубопровод; 2 - всасывающий патрубок; 3 - сопло (насадка); 4 - смесительная камера; 5 - диффузор.

Г. применяются для транспортировки материалов на незначит. расстояния (до неск. сотен м), при гидромеханизации горных и строит, работ, для удаления шламов на обогатит, ф-ках, шлака и золы в котельных и на электростанциях, для транспортировки песка и гравия.

Лит.: Каменев П. Н., Гидроэлеваторы в строительстве, М., 1964; Фридман Б. Э., Гидроэлеваторы, М., 1960.

В. В. Ляшевич.

ГИДРОЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством к-рых энергия потока воды преобразуется в электрич. энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энер-гетич. оборудования, преобразующего энергию движущейся под напором воды в механич. энергию вращения (см. Гидротурбина), к-рая, в свою очередь, преобразуется в электрич. энергию (см. Гидрогенератор ).

Рис. 1. Схема концентрации падения реки плотиной: ВБ - верхний бьеф; НБ -нижний бьеф; Нб - напор брутто.

Напор ГЭС создаётся концентрацией падения реки на используемом участке (аб) плотиной (рис. 1), либо деривацией (рис. 2), либо плотиной и деривацией совместно (рис. 3). Осн. энергетич. оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции - гидроагрегаты, вспомогат. оборудование, устройства автоматич. управления и контроля; в центральном посту управления - пульт оператора-диспетчера или автооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отд. зданиях или на открытых площадках. Распределителъные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или неск. агрегатами и вспомогат. оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогат. операций по обслуживанию ГЭС.

Рис. 2. Схема концентрации падения реки деривацией (подводящей): ВБ- верхний бьеф; НБ - нижний бьеф; Нб -напор брутто.

Рис. 3. Смешанная схема концентрациипадения реки плотиной и деривацией: ВБ - верхний бьеф; НБ - нижний бьеф; Нб - напор брутто.

По установленной мощности (в Mвт) различают ГЭС мощные (св. 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора Нб (разности уровней верхнего и нижнего бьефа), расхода воды Q (м3/сек), используемого в гидротурбинах, и кпд гидроагрегата . По ряду причин (вследствие, напр., сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагр