БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ющих осадочных пород, образуя фундамент молодых платформ (напр., Западно-Сибирская плита). Наиболее молодые, кайнозойские части Г. п. ещё не закончили геосинклинального развития, сохраняя до настоящего времени высокую подвижность, сопровождаемую повышенной сейсмичностью и активным вулканизмом. Таковы области Средиземного моря, Малайского арх., области островных дуг, окаймляющих вост. побережье Азии в Тихоокеанском Г. п., и др.

Помимо перечисленных главных Г. п., включающих складчатые геосинклинальные области и системы различного возраста, существуют два пояса, закончивших геосинклинальное развитие в конце протерозоя (в эпоху байкальской складчатости). Один из них прослеживается в Аравии и Вост. Африке, а второй - на В. Юж. Америки и на 3. Африки. Контуры этих поясов определяются различными исследователями по-разному.

Лит. см. при ст. Геосинклиналь.

В. Е. Каин, М. В. Муратов, Е. В. Шанцер.

ГЕОСИНКЛИНАЛЬНЫЙ ПОЯС, складчатый геосинклинальный пояс, складчатый по-я с, геосинклиналь (во втором значении), обширный линейно вытянутый тектонически высокоподвижный пояс земной коры. Располагается либо между древними континентальными платформами (см. рис.), либо между платформами и ложем океана, включая внутренние и окраинные моря, островные дуги и глубоководные желоба. Длина достигает нескольких десятков тысяч км, ширина - порядка сотен и даже тысяч км. В течение новейшей истории Земли (неогея), т. е. в последние 1,6 млрд. лет, развивались пять главных Г. п.: Тихоокеанский, кольцом окружающий Тихий ок. и отделяющий его ложе от платформ Сев. и Юж. Америки, Азии, Австралии и Антарктиды; Средиземноморский, сочленяющийся с первым в области Малайского архипелага и простирающийся через юг Евразии и С.-З. Африки до Гибралтара; Урало-Монгольский (Урало-Монголо-Охотский), огибающий Сибирскую платформу с 3. и Ю. и отделяющий её от Восточно-Европейской и Китайско-Корейской; Атлантический, охватывающий побережья материков в сев. части Атлантич. ок., и Арктически и - вокруг Сев. Ледовитого ок. Иногда Тихоокеанский и Атлантич. Г. п. подразделяют соответственно на Восточно- и Западно-Тихоокеанский, Восточно- и Западно-Атлантический.

За время эволюции пояса в его пределах последовательно закладывались и развивались многочисл. геосинклинальные области и системы, к-рые в разное время охватывались складчатостью, региональным метаморфизмом и гранитизацией, превращаясь в разновозрастные складчатые горные системы, а затем в молодые платформы. Самые древние складчатые области Г. п. имеют поздне-протерозойский возраст (байкалиды). Они располагаются чаще всего по периферии пояса, примыкая к одной или обеим ограничивающим пояс древним платформам. Более молодые складчатые области - палеозойские (кале-дониды, герциниды), мезозойские и кайнозойские занимают положение, соответственно более близкое к центр, части пояса или к противоположному от платформы обрамлению (в случае окраинноматерикового Г. п.).
Большая часть Г. п. к совр. эпохе приобрела характер складчатых горных сооружений или молодых платформ. Так, палеозойские структуры на обширных площадях погребены под мощным чехлом горизонтально залегающих осадочных пород, образуя фундамент молодых платформ (напр., Западно-Сибирская плита). Наиболее молодые, кайнозойские части Г. п. ещё не закончили геосинклинального развития, сохраняя до настоящего времени высокую подвижность, сопровождаемую повышенной сейсмичностью и активным вулканизмом. Таковы области Средиземного моря, Малайского арх., области островных дуг, окаймляющих вост. побережье Азии в Тихоокеанском Г. п., и др.

Помимо перечисленных главных Г. п., включающих складчатые геосинклинальные области и системы различного возраста, существуют два пояса, закончивших геосинклинальное развитие в конце протерозоя (в эпоху байкальской складчатости). Один из них прослеживается в Аравии и Вост. Африке, а второй - на В. Юж. Америки и на 3. Африки. Контуры этих поясов определяются различными исследователями по-разному. Лит. см. при ст. Геосинклиналь.

В. Е. Каин, М. В. Муратов, Е. В. Шанцер.

ГЕОСТРОФИЧЕСКИЙ ВЕТЕР (от гео... и греч. strophe - поворот, вращение), горизонтальное равномерное и прямолинейное движение воздуха при отсутствии силы трения и равновесии градиента давления и отклоняющей силы вращения Земли; простейшая теоретич. схема движения воздуха на вращающейся Земле. Действит. ветер в слоях атмосферы, лежащих выше 1 км над земной поверхностью, близок к Г. в. Направлен Г. в. по изобаре, причём область низкого давления остаётся слева от потока в Сев. полушарии и справа - в Южном. Скорость Г. в. пропорциональна величине горизонтального градиента давления. При равных градиентах она обратно пропорциональна плотности воздуха и синусу геогр. широты, а следовательно, возрастает с высотой и в направлении к экватору.

ГЕОСФЕРЫ (от гео... и сфера), концентрические слои (оболочки), образованные веществом Земли. В направлении от периферии к центру Земли расположены атмосфера, гидросфера, земная кора, силикатная твёрдая мантия Земли (верхняя и нижняя) и ядро Земли с ме-таллич. свойствами [делится на внешнее ядро (жидкое) и центральное - субъядро (по-видимому, твёрдое)].

Область обитания организмов, включающая нижнюю часть атмосферы, всю гидросферу и верхнюю часть земной коры, наз. биосферой. См. также Земля.

ГЕОТЕКТОНИКА (от гео... и тектоника), раздел геологии, изучающий струк-ТУРУ. движения, деформации и развитие верхних твёрдых оболочек Земли - земной коры и верхней мантии (тектоно-сферы) в связи с развитием Земли в целом.

"ГЕОТЕКТОНИКА", научный журнал АН СССР. Издаётся в Москве с 1965. Публикует статьи по вопросам геотектоники и смежных областей знания (тек-тонофизика, динамич. геология, геофизика, геоморфология и др.), затрагивающим геотектонич. проблемы. Периодичность издания - 6 номеров в год. Тираж (1971) св. 1800 экз. Л.В.Семёнов.

ГЕОТЕКТУРА (от гео... и лат. tectura - покрытие), самые крупные черты рельефа Земли: материки и океанич. внадины. Геотектурные элементы рельефа обусловлены силами общепланетарного масштаба, взаимодействующими со всеми другими процессами, принимающими участие в формировании структуры земной коры. Термин "Г." предложен в 1946 И. П. Герасимовым.

ГЕОТЕРМИКА, геотермия (от гео... и греч. therme - тепло), раздел физики Земли, изучающий тепловое состояние и тепловую историю земных недр. Солнечное тепло проникает только в самые верхние слои земной коры. Суточные колебания темп-ры почвы распространяются на глубину 1,2-1,5 м, годовые на 10-20 м. Далее теплота, связанная с солнечным излучением, не проникает, однако с увеличением глубины установлен закономерный рост темп-ры (см. Геотермический градиент), что свидетельствует о существовании источников теплоты внутри Земли. Тепловой поток непрерывно поступает из недр к поверхности Земли и рассеивается в окружающем пространстве. Плотность теплового потока определяется произведением геотермич. градиента на коэфф. теплопроводности. Значит, часть теплового потока составляет радиогенная теплота, т. е. теплота, выделяемая при распаде радиоактивных элементов, содержащихся в Земле.

Непосредственное измерение темп-ры недр в пределах суши производится в шахтах и буровых скважинах электротермометрами; для измерений на морском дне употребляют термоградиентографы. Теплопроводность горных пород определяется на основании изучения образцов в лабораториях. Измерения показывают, что изменение темп-ры с глубиной в разных местах колеблется от 0,006 до 0,15 град/м. Плотность теплового потока более постоянна и тесно связана с текто-нич. строением. Она очень редко выходит за пределы 0,025-0,1 вт/м2 (0,6- 2,4 мккал/см2•сек), отдельные значения доходят до 0,3 вт/м2 (8 мккал/см2 • сек). Для докембрийских кристаллич. щитов характерны малые значения [до 0,04 вт/м2 (0,9 мккал/см2•сек)], для платформ - средние [0,05-0,06 вт/м2 (1,1- 1,5 мккал/см2•сек)], для тектонически активных областей (срединноокеани-ческие хребты, рифты, области современного орогенеза) - повышенные значения [0,07-0,1 вт/м2(1,7-2,6 мккал/см2•сек)]. В среднем и для океанов, и для материков, и для Земли в целом получаются одинаковые значения [ок. 0,05 вт/м2 (1,2 мккал/см2• сек)], однако эта цифра не очень надёжна, т. к. большая часть поверхности Земли ещё не обследована.

Непосредственное измерение темп-ры в Земле возможно только до глубины неск. км. Далее темп-ру оценивают косвенно, по темп-ре лав вулканов и по нек-рым геофизич. данным. Глубже 400 км определяются лишь вероятные пределы темп-ры. При этом учитывается, что в Гутенберга слое темп-pa близка к точке плавления, а глубже темп-pa плавления повышается (благодаря росту давления) быстрее, чем фактич. темп-pa, и у границы ядра Земли вещество недр остаётся твёрдым, хотя ядро (кроме субъядра) расплавлено. Вероятны след, пределы темп-р на разных глубинах:.


Глубина , км

Темп-pa, °С
50

700- 800
100

900-1300
500

1500-2000
1000

1700-2500
2900 (граница ядра)

2000-4700
6371 (центр Земли)

2200-5000

Таким образом, геотермич. градиент с глубиной сильно уменьшается. Мощность всего теплового потока, идущего из Земли, ок. 2,5•1013 вт, что примерно в 30 раз больше мощности всех электростанций мира, но в 4 тыс. раз меньше количества теплоты, получаемой Землёй от Солнца. Поэтому теплота, поступающая из недр Земли, не влияет на климат.

Для выяснения тепловой истории Земли необходимы данные о первоначальном содержании радиоактивных элементов в различных оболочках Земли, о их перемещении из одной геосферы в другую, об энергии и темпах их распада, возрасте Земли, о количестве теплоты, полученном планетой в процессе её образования, данные о количестве теплоты, выделяемой и поглощаемой при различных механич., физич. и химич. процессах в недрах Земли. Должны быть учтены также: различные коэфф. теплопроводности и удельной теплоёмкости вещества земных недр, темп-ры и давления на разных глубинах и на поверхности Земли.

Расчётные данные позволяют нарисовать такую картину тепловой истории Земли. Сразу после образования планеты из роя метеорных тел темп-pa её недр была, вероятно, 700-2000°С. Расчёты для Земли с силикатным ядром показывают, что она никогда не была расплавленной, кроме ядра и, быть может, слоя Гутенберга. Глубокие недра Земли медленно нагреваются (на несколько градусов за 107 лет), а верхние слои её (несколько сот километров) ещё медленнее остывают.

Геотермич. исследования имеют большое теоретич. значение для разных наук о Земле. В частности, велика их роль в построении и оценке тектонич. гипотез. Так, напр., данные Г. приходят в противоречие с гипотезой тепловой контракции (см. Контракционная гипотеза) и некоторыми другими гипотезами, к-рые предполагают, что выходы теплоты из Земли гораздо больше наблюдаемых. Геотермические измерения используются и для практических целей. Они помогают в разведке нефти и других полезных ископаемых, в подготовке к использованию внутр. тепла Земли для пром. и бытовых целей.

Лит.: Геотермические исследования. [Сб. ст.], М., 1964; Магницкий В. А., Внутреннее строение и физика Земли, [М.], 1965; Геотермические исследования и использование тепла Земли, [Труды 2-го совещания по геотермическим исследованиям в СССР], М., 1966; Любимова Е. А., Термика Земли и Луны, М., 1968; Вакин Е. А., Поляк Б. Г.,Сугробов В.М., Основные проблемы геотермии вулканических областей, в сб.: Вулканизм, гидротермы и глубины Земли, Петропавловск-Камчатский, 1969. Е. А. Любимова, И. М. Кутасов, Е. Н. Люстих.

ГЕОТЕРМИЧЕСКАЯ СТУПЕНЬ, увели чение глубины в земной коре (в метрах), соответствующее повышению темп-ры горных пород на 1°С. В среднем Г. с. равна 30-40 л; в кристаллич. породах в неск. раз больше (до 120-200 м), чем в осадочных. Колеблется в значит, пределах в зависимости от глубины и места (от 5 до 150 м). Для Москвы средняя величина Г. с. равна 38,4 м. Измерение прироста темп-ры горных пород с увеличением глубин их залегания устанавливается геотермическим градиентом.

ГЕОТЕРМИЧЕСКАЯ ЭЛЕКТРОСТАНЦИЯ, тепловая электростанция, преобразующая внутр. тепло Земли в электрич. энергию. Источники глубинного тепла - радиоактивные превращения, хим. реакции и др. процессы, происходящие в земной коре (см. Геотермика). Темп-pa пород с глубиной растёт и на уровне 2000-3000 м от поверхности Земли превышает 100°С. Циркулирующие на больших глубинах воды нагреваются до значит, темп-р и могут быть выведены на поверхность по буровым скважинам. В вулканич. районах глубинные воды, нагреваясь, поднимаются по трещинам в земной коре. В этих районах термальные воды имеют наиболее высокую темп-ру и расположены близко к поверхности, иногда они выделяются в виде перегретого пара. Глубинное бурение в будущем позволит освоить высокую темп-ру магматич. очагов. Термальные воды с темп-рой до 100°С выходят на поверхность во мн. р-нах СССР.

В Сов. Союзе первая Г. э. мощностью 5 Мвт пущена в 1966 на юге Камчатки, в долине реки Паужетки, в районе вулканов Кошелева и Камбального. Пароводяная смесь с теплосодержанием до 840 кдж/кг (200 ккал/кг) выводится буровыми скважинами на поверхность и направляется в сепарационные устройства, где при давлении 0,23 Мн/м2 (2,3 ат) пар отделяется от воды. Отсепарированный пар поступает в турбины, а горячая вода при темп-ре 120°С используется для теплоснабжения населённых пунктов и для др. целей. На электростанции установлены две турбины мощностью по 2,5 Мвт. На Г. э. нет котельного цеха, топливопо-дачи, золоулавливателей и мн. др. устройств, необходимых для обычной тепловой электростанции; практически станция состоит из машинного зала и помещения для электротехнич. устройств. Себестоимость электроэнергии на этой Г. э. в неск. раз ниже, чем на местных дизельных электростанциях.

Получение электроэнергии на Г. э. осуществляется по одной из схем: прямой, непрямой и смешанной. При прямой схеме природный пар из скважин направляется по трубам прямо в турбины, соединённые с электрическими генераторами. Пар и сконденсировавшаяся вода далее идут для теплофикации и иногда в химическое произ-во. При непрямой схеме производится предварит, очистка пара от агрессивных (сильно коррелирующих) газов. При смешанной схеме природный неочищенный пар поступает в турбины, и затем из сконденсировавшейся воды удаляются не растворившиеся в ней газы.

Энергия термальных вод с темп-рой ок. 100 С в невулканич. районах страны может быть использована путём применения вакуумной турбины с несколькими расширителями или на основе цикла с низкокипящими рабочими веществами - фреонами и другими.

За рубежом Г. э. построены и сооружаются в Италии (Тоскана, район Лар-дерелло), Новой Зеландии (зона Таупо), США (Калифорния, Долина Больших

Гейзеров) и Японии. В районе Рейкьявика (Исландия) геотермальные воды используются для теплофикации.

Лит.: Выморков Б. М., Геотермальные электростанции, М.- Л., 1966; "Energy International", 1966, т. 3, № 11, р. 14; 1968, т. 5, № 12, р. 16; 1969, т. 6, № 2, р. 28.

ГЕОТЕРМИЧЕСКИЙ ГРАДИЕНТ, величина, на к-рую повышается темп-ра горных пород с увеличением глубин залегания на каждые 100 м. В среднем для глубин коры, доступных непосредств. температурным измерениям, величина Г. г. принимается равной приблизительно 3°С. Г. г. меняется от места к месту в зависимости от форм земной поверхности, теплопроводности горных пород, циркуляции подземных вод, близости вулканич. очагов, различных химич. реакций, происходящих в земной коре. Закономерный рост темп-ры с увеличением глубины указывает на существование теплового потока из недр Земли к поверхности. Величина этого потока равна произведению Г. г. на коэффициент теплопроводности.

ГЕОТЕХНОЛОГИЯ, химические, физико-химические, биохимические и микробиологические методы добычи полезных ископаемых на месте их залегания. Добыча полезных ископаемых геотехнологич. методами производится, как правило, через скважины, буримые с поверхности до месторождения. Примеры Г.: подземная газификация углей, бактериальное выщелачивание, расплавление серы, возгонка сублимирующих веществ, извлечение минеральных продуктов из термальных вод и вулканич. выделений, термич. добыча нефти и продуктов её перегонки и т. д. Ок. 2/з мировой добычи серы приходится на её подземное расплавление в рудном теле перегретой водой, обеспечивающее высокое качество (99,99% чистоты). Таким путём можно вести разработку асфальта, буры, озокерита и др. минералов, плавящихся при темп-ре 80-90°С. Добычу калийных солей возможно проводить растворением с последующим выкачиванием раствора и выпариванием его на поверхности (см. также Выщелачивание).

Ведутся (1971) промышленные опыты по ускорению иавлечения металлов из руд, повышению пластового давления на нефтеносных месторождениях и др. за счёт искусств, стимулирования микробиологической активности. Г. позволяет вовлечь в эксплуатацию месторождения с непромышленным содержанием руд, расширить добычу рассеянных элементов.

Лит.: Кириченко И. П., Химические способы добычи полезных ископаемых, М., 1958; Химия земной коры, т. 1 - 2, М.,1963 - 1964; Проблемы геохимии, М., 1965.

В. А. Боярский.

ГЕОТРИХОЗ, заболевание, вызываемое грибком - геотрихоном (geotrichon), характеризующееся поражением кожи, слизистых оболочек и лёгких. Геотрихон обнаруживается на слизистой оболочке полости рта и в кишечнике здоровых людей. Заболевания, обусловленные па-разитированием грибка, встречаются редко: однако в связи с широким распространением лечения антибиотиками заболевания Г. участились; поэтому ряд авторов полагает, что Г. возникает вследствие нарушения нормальной микрофлоры организма (дисбактериоза). Нередко Г. развивается как суперинфекция (дополнительная инфекция) при различных тяжёлых заболеваниях лёгких, кишеч ника. Поражение кожи грибком геотрихоном впервые описано нтал. патологом А. Кастеллани в 1911. Изменения на коже могут быть островоспалительными, типа экземы, с образованием эрозивных мокнущих очагов или пустулёзных (гнойничковых) элементов. Заболевание слизистой оболочки рта, конъюнктивы глоточных миндалин внешне напоминает поражения при кандидамикозе. Наиболее часто при Г. поражаются лёгкие и бронхи - забо