БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

транств определяют, формулируя их свойства как аксиомы, то используют либо координаты, либо метрику и др. Непротиворечивость и тем самым осмысленность аксиоматич. теории проверяется указанием модели, на к-рой она реализуется, как это впервые было сделано для геометрии Лобачевского. Сама модель строится из абстрактных матем. объектов, поэтому окончательное обоснование любой геом. теории уходит в область оснований математики вообще, к-рые не могут быть окончательными в полном смысле, но требуют углубления (см. Математика, Аксиоматический метод).

Перечисленные принципы в разных сочетаниях и вариациях порождают обширное разнообразие геом. теорий. Значение каждой из них и степень внимания к её задачам определяются содержательностью этих задач и получаемых результатов, её связями с др. теориями Г., с др. областями математики, с точным естествознанием и задачами техники. Каждая данная геом. теория определяется среди других геом. теорий, во-первых, тем, какое пространство или какого типа пространства в ней рассматриваются. Во-вторых, в определение теории входит указание на исследуемые фигуры. Так различают теории многогранников, кривых, поверхностей, выпуклых тел и т. д. Каждая из этих теорий может развиваться в том или ином пространстве. Напр., можно рассматривать теорию многогранников в обычном евклидовом пространстве, в n-мерном евклидовом пространстве, в пространстве Лобачевского и др. Можно развивать обычную теорию поверхностей, проективную, в пространстве Лобачевского и т. д. В-третьих, имеет значение характер рассматриваемых свойств фигур. Так, можно изучать свойства поверхностей, сохраняющиеся при тех или иных преобразованиях;можно различать учение о кривизне поверхностей, учение об изгибаниях (т. е. о деформациях, не меняющих длин кривых на поверхности), внутреннюю Г. Наконец, в определение теории можно включать её осн. метод и характер постановки задач. Так различают Г.: элементарную, аналитическую, дифференциальную;напр., можно говорить об элементарной или аналитич. Г. пространства Лобачевского. Различают Г. в малом, рассматривающую лишь свойства сколь угодно малых кусков геом. образа (кривой, поверхности, многообразия), от Г. в целом, изучающей, как ясно из её названия, геом. образы в целом на всём их протяжении. Очень общим является различение аналитич. методов и методов синтетич. Г. (или собственно геом. методов); первые используют средства соответствующих исчис-лений: дифференциального, тензорного и др., вторые оперируют непосредственно геом. образами.

Из всего разнообразия геом. теорий фактически более всего развиваются n-мерная евклидова Г. и риманова (включая псевдориманову) Г. В первой разрабатывается, в особенности, теория кривых и поверхностей (и гиперповерхностей разного числа измерений), причём особое развитие получает исследование поверхностей в целом и поверхностей, существенно более общих, чем гладкие, изучавшиеся в классич. дифференциальной Г.; сюда же включаются многогранники (многогранные поверхности). Затем нужно назвать теорию выпуклых тел, к-рая, впрочем, в большой части может быть отнесена к теории поверхностей в целом, т. к. тело определяется своей поверхностью. Далее - теория правильных систем фигур, т. е. допускающих движения, переводящие всю систему саму в себя и к.-л. её фигуру в любую другую (см. Фёдоровские группы). Можно отметить, что значительное число важнейших результатов в этих областях принадлежат сов. геометрам: очень полная разработка теории выпуклых поверхностей и существенное развитие теории общих невыпуклых поверхностей, разнообразные теоремы о поверхностях в целом (существования и единственности выпуклых поверхностей с заданной внутр. метрикой или с заданной той или иной функцией кривизны, теорема о невозможности существования полной поверхности с кривизной, всюду меньшей к.-л. отрицательного числа, и др.), исследование правильного деления пространства и др.

В теории римановых пространств исследуются вопросы, касающиеся связи их метрич. свойств с топологич. строением, поведение геодезич. (кратчайших на малых участках) линий в целом, как, напр., вопрос о существовании замкнутых геодезических, вопросы погружения, т. е. реализации данного m-мерного риманова пространства в виде ти-мерной поверхности в евклидовом пространстве к.-л. числа измерений, вопросы псевдо-римановой Г., связанные с общей теорией относительности, и др. К этому можно добавить развитие разнообразных обобщений римановой Г. как в духе общей дифференциальной Г., так и в духе обобщений синтетич. Г.

В дополнение следует упомянуть алгебраическую геометрию, развившуюся из аналитич. Г. и исследующую прежде всего геом. образы, задаваемые алгебр, ур-ниями; она занимает особое место, т. к. включает не только геометрические, но также алгебр, и арифметич. проблемы. Существует также обширная и важная область исследования бесконечномерных пространств, к-рая, однако, не причисляется к Г., а включается в функциональный анализ, т. к. бесконечномерные пространства конкретно определяются как пространства, точками к-рых служат те или иные функции. Тем не менее в этой области есть много результатов и проблем, носящих подлинно геом. характер и к-рые поэтому следует относить к Г.

Значение геометрии. Применение евклидовой Г. представляет самое обычное явление всюду, где определяются площади, объёмы и т. п. Вся техника, поскольку в ней играют роль формы и размеры тел, пользуется евклидовой Г. Картография, геодезия, астрономия, все графич. методы, механика немыслимы без Г. Ярким примером является открытие И. Кеплером факта вращения планет по эллипсам; он мог воспользоваться тем, что эллипс был изучен ещё древними геометрами. Глубокое применение Г. представляет геом. кристаллография, послужившая источником и областью приложения теории правильных систем фигур (см. Кристаллография).

Более отвлечённые геометрические теории находят широкое применение в механике и физике, когда совокупность состояний к.-л. системы рассматривается как нек-рое пространство (см. раздел Обобщение предмета геометрии). Так, все возможные конфигурации (взаимное расположение элементов) механич. системы образуют конфигурационное пространство; движение системы изображается движением точки в этом пространстве. Совокупность всех состояний физ. системы (в простейшем случае - положения и скорости образующих систему материальных точек, напр, молекул газа) рассматривается как фазовое пространство системы. Эта точка зрения находит, в частности, применение в статистической физике и др.

Впервые понятие о многомерном пространстве зародилось в связи с механикой ещё у Ж. Лагранжа, когда к трём пространств, координатам х, у, z в качестве четвёртой формально присоединяется время t. Так появляется четырёхмерное пространство - время, где точка определяется четырьмя координатами х, у, z, t. Каждое событие характеризуется этими четырьмя координатами и, отвлечённо, множество всех событий в мире оказывается четырёхмерным пространством. Этот взгляд получил развитие в геом. трактовке теории относительности, данной Г. Минковским, а потом в построении А. Эйнштейном общей теории относительности. В ней он воспользовался четырёхмерной римановой (псевдоримановой) Г. Так геом. теории, развившиеся из обобщения данных пространственного опыта, оказались матем. методом построения более глубокой теории пространства и времени. В свою очередь теория относительности дала мощный толчок развитию общих геом. теорий. Возникнув из элементарной практики, Г. через ряд абстракций и обобщений возвращается к естествознанию и практике на более высокой ступени в качестве метода.

С геом. точки зрения многообразие пространства - времени обычно трактуется в общей теории относительности как неоднородное римановского типа, но с метрикой, определяемой знакопеременной формой, приводимой в бесконечно малой области к виду

(с - скорость света в вакууме). Само пространство, поскольку его можно отделить от времени, оказывается также неоднородным римановым. С совр. геом. точки зрения лучше смотреть на теорию относительности следующим образом. Специальная теория относительности утверждает, что многообразие пространства - времени есть псевдоевклидово пространство, т. е. такое, в к-ром роль движений играют преобразования, сохраняющие квадратичную форму

точнее, это есть пространство с группой преобразований, сохраняющих указанную квадратичную форму. От всякой формулы, выражающей физ. закон, требуется, чтобы она не менялась при преобразованиях группы этого пространства, к-рые суть так называемые преобразования Лоренца. Согласно же общей теории относительности, многообразие пространства - времени неоднородно и лишь в каждой бесконечно малой области сводится к псевдоевклидову, т. е. оно есть пространство картановского типа (см. раздел Современная геометрия). Однако такое понимание стало возможно лишь позже, т. к. само понятие о пространствах такого типа появилось после теории относительности и было развито под её прямым влиянием.

В самой математике положение и роль Г. определяются прежде всего тем, что через неё в математику вводилась непрерывность. Математика как наука о формах действительности сталкивается прежде всего с двумя общими формами: дискретностью и непрерывностью. Счёт отдельных (дискретных) предметов даёт арифметику, пространств. непрерывность изучает Г. Одним из осн. противоречий, движущих развитие математики, является столкновение дискретного и непрерывного. Уже деление непрерывных величин на чарти и измерение представляют сопоставление дискретного и непрерывного: напр., масштаб откладывается вдоль измеряемого отрезка отд. шагами. Противоречие выявилось с особой ясностью, когда в Др. Греции (вероятно, в 5 в. до н. э.) была открыта несоизмеримость стороны и диагонали квадрата: длина диагонали квадрата со стороной 1 не выражалась никаким числом, т. к. понятия иррационального числа не существовало. Потребовалось обобщение понятия числа - создание понятия иррационального числа (что было сделано лишь много позже в Индии). Общая же теория иррациональных чисел была создана лишь в 70-х гг. 19 в. Прямая (а вместе с нею и всякая фигура) стала рассматриваться как множество точек. Теперь эта точка зрения является господствующей. Однако затруднения теории множеств показали её ограниченность. Противоречие дискретного и непрерывного не может быть полностью снято.

Общая роль Г. в математике состоит также в том, что с нею связано идущее от пространственных представлений точное синтетич. мышление, часто позволяющее охватить в целом то, что достигается анализом и выкладками лишь через длинную цепь шагов. Так, Г. характеризуется не только своим предметом, но и методом, идущим от наглядных представлений и оказывающимся плодотворным в решении многих проблем др. областей математики. В свою очередь, Г. широко использует их методы. Т. о., одна и та же матем. проблема может сплошь и рядом трактоваться либо аналитически, либо геометрически, или в соединении обоих методов.

В известном смысле, почти всю математику можно рассматривать как развивающуюся из взаимодействия алгебры (первоначально арифметики) и Г., а в смысле метода - из сочетания выкладок и геом. представлений. Это видно уже в понятии совокупности всех вещественных чисел как числовой прямой, соединяющей арифметич. свойства чисел с непрерывностью. Вот нек-рые осн. моменты влияния Г. в математике.

1) В возникновении и развитии анализа Г. наряду с механикой имела решающее значение. Интегрирование происходит от нахождения площадей и объёмов, начатого ещё древними учёными, причём площадь и объём как величины считались определёнными; никакое аналитич. определение интеграла не давалось до 1-й пол. 19 в. Проведение касательных было одной из задач, породивших дифференцирование. Графич. представление функций сыграло важную роль в выработке понятий анализа и сохраняет своё значение. В самой терминологии анализа виден геом. источник его понятий, как, напр., в терминах: точка разрыва, область изменения переменной и т. п. Первый курс анализа, написанный в 1696 Г. Лопиталем, назывался: Анализ бесконечно малых для понимания кривых линий. Теория дифференциальных ур-ний в большей части трактуется геометрически (интегральные кривые и т. п.). Вариационное исчисление возникло и развивается в большой мере на задачах Г., и её понятия играют в нём важную роль.

2) Комплексные числа окончательно утвердились в математике на рубеже 18- 19 вв. только вследствие сопоставления их с точками плоскости, т. е. путём построения комплексной плоскости. В теории функций комплексного переменного геом. методам отводится существенная роль. Само понятие аналитич. функции w = f(z) комплексного переменного может быть определено чисто геометрически: такая функция есть конформное отображение плоскости z (или области плоскости z) в плоскость w. Понятия и методы римановой Г. находят применение в теории функций нескольких комплексных переменных.

3) Осн. идея функционального анализа состоит в том, что функции данного класса (напр., все непрерывные функции, заданные на отрезке [0,1]) рассматриваются как точки функционального пространства, причём отношения между функциями истолковываются как геом. отношения между соответствующими точками (напр., сходимость функций истолковывается как сходимость точек, максимум абсолютной величины разности функций - как расстояние, и т. п.). Тогда многие вопросы анализа получают геом. освещение, оказывающееся во многих случаях очень плодотворным. Вообще, представление тех или иных матем. объектов (функций, фигур и др.) как точек нек-poro пространства с соответствующим геом. толкованием отношений этих объектов является одной из наиболее общих и плодотворных идей совр. математики, проникшей почти во все её разделы.

4) Г. оказывает влияние на алгебру и даже на арифметику - теорию чисел. В алгебре используют, напр., понятие векторного пространства. В теории чисел создано геом. направление, позволяющее решать многие задачи, едва поддающиеся вычислит, методу. В свою очередь нужно отметить также графич. методы расчётов (см. Номография) и геом. методы совр. теории вычислений и вычислит, машин.

5) Логич. усовершенствование и анализ аксиоматики Г. играли определяющую роль в выработке абстрактной формы аксиоматич. метода с его полным отвлечением от природы объектов и отношений, фигурирующих в аксиоматизируемой теории. На том же материале вырабатывались понятия непротиворечивости, полноты и независимости аксиом.

В целом взаимопроникновение Г. и др. областей математики столь тесно, что часто границы оказываются условными и связанными лишь с традицией. Почти или вовсе не связанными с Г. остаются лишь такие разделы, как абстрактная алгебра, матем. логика и нек-рые др.

Лит.: Основные классические работы.

Евклид, Начала, пер. с греч., кн. 1 - 15, М. -Л., 1948 -50; Декарт Р., Геометрия, пер. с латин., М. -Л., 1938; Монж Г., Приложения анализа к геометрии, пер. с франц., М.- Л., 1936; Ponselet J. V., Traite des proprietes projectives des figures, Metz - P., 1822; Гаусс К. Ф., Общие исследования о кривых поверхностях, пер. с нем., в сб.: Об основаниях геометрии, М., 1956; Лобачевский Н. И., Поли, собр. соч., т. 1-3, М.- Л., 1946-51; Больаи Я., Appendix. Приложение,.., пер. с латин., М.- Л., 1950; Риман Б., О гипотезах, лежащих в основаниях геометрии, пер. с нем., в сб.: Об основаниях геометрии, М., 1956; Клейн Ф., Сравнительное обозрение новейших геометрических исследований (Эрлангенская программа), там же; Картан Э., Группы голономии обобщенных пространств, пер. с франц., в кн.: VIII-й Международный конкурс на соискание премии имени Николая Ивановича Лобачевского (1937 год), Казань, 1940; Гильберт Д., Основания геометрии, пер. с нем., М.- Л., 1948.

История* Кольман Э., История математики в древности, М., 1961; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Cantor М., Vorlesungen uber die Geschichte der Mathematik, Bd 1 - 4, Lpz., 1907 - 08.

Курсы, а) Основания геометрии. Каган В. Ф., Основания геометрии, ч. 1, М.- Л., 1949; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961; Погорелов А. В., Основания геометрии, 3 изд., М., 1968.

б) Элементарная геометрия. Адамар Ж., Элементарная геометрия, пер. с франц., ч. 1, 3 изд., М., 1948, ч. 2, М., 1938; Погорелов А. В., Элементарная геометрия, М., 1969,

в) Аналитическая геометрия. Александров П. С., Лекции по аналитической геометрии..., М., 1968; Погорелов А. В., Аналитическая геометрия, 3 изд., М., 1968.

г) Дифференциальная геометрия. Рашевский П. К., Курс дифференциальной геометрии, 3 изд., М.- Л., 1950; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1 - 2, М.- Л., 1947 - 48; Погорелов А. В., Дифференциальная геометрия, М., 1969.

д) Начертательная и проективная геометрия. Глаголев Н. А., Начертательная геометрия, 3 изд., М.- Л., 1953; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961.

е) Риманова геометрия и её обобщения. Рашевский П. К., Риманова геометрия и тензорный анализ, 2 изд., М.- Л., 1964; Норден А. П., Пространства аффинной связности, М.- Л., 1950; Картан Э., Геометрия римановых пространств, пер. с франц., М.- Л., 1936; Эйзенхарт Л. П., Риманова геометрия, пер. с англ., М., 1948.

Некоторые монографии по геометрии. Федоров Е. С., Симметрия и структура кристаллов. Основные работы, М., 1949; Александров А. Д., Выпуклые многогранники, М.- Л., 1950; его же, Внутренняя геометрия выпуклых поверхностей, М.- Л., 1948; П о г о р е л о в А. В., Внешняя геометрия выпуклых поверхностей, М., 1969; Буземан Г., Геометрия геодезических, пер. с англ., М., 1962; его же, Выпуклые поверхности, пер. с англ., М., 1964; Картан Э., Метод подвижного репера, теория непрерывных групп и обобщенные пространства, пер. с франц., М.- Л., 1936; Фиников С. П., Метод внешних форм Картана в дифференциальной геометрии, М.- Л., 1948; его же, Проективно-дифференциальная геометрия, М.- Л., 1937; его же, Теория конгруенций, М.- Л., 1950; Схоутен И. А., С т р о и к Д. Д ж., Введение в новые методы дифференциальной геометрии, пер. с англ., т. 1 - 2, М.- Л., 1939 - 48; Н о м н д з у К.. Группы Ли и дифференциальная геометрия, пер. с англ., М., 1960; Милнор Д ж., Теория Морса, пер. с англ., М., 1965.