БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

и гидрогеол. карт, к-рые широко использовались при организации водных преград, осуществлении манёвра войск и в др. воен. целях. Военно-геол. службы были созданы почти во всех армиях воюющих стран. В послевоен. время Г. в. получила дальнейшее развитие, особенно в связи с появлением ядерного оружия.

Лит.: Военная геология, М.- Л., 1945; Попов В. В., Геология в военно-инженерном деле, М., 1958.

А.К.Сычёв.

"ГЕОЛОГИЯ И ГЕОФИЗИКА", ежемесячный науч. журнал Сиб. отделения АН СССР. Издаётся с 1960 в Новосибирске. Публикует теоретич. и методич. статьи по общим вопросам геологии и геофизики, по геол. и геофиз. изученности терр. Сибири, Д. Востока и сопредельных стран, а также статьи о закономерностях распространения полезных ископаемых. Тираж 2990 экз. (1970). Л. В. Семёнов.

"ГЕОЛОГИЯ НЕФТИ И ГАЗА", ежемесячный научно-технич. журнал Министерств СССР: геологии, нефтяной пром-сти, газовой пром-сти. Основан в 1957 в Москве (в 1957-58 наз. Геология нефти). Освещает вопросы геологии и геофизики нефти и газа; нефтегазопромысловой геологии и геофизики; поисков и разведки нефтяных и газовых месторождений, а также геолого-экономич. вопросы нефти (газа) и общие вопросы нефте- и газодобычи. Тираж до 4500 экз. (1971).

Л. В. Семёнов.

"ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ", научный журнал АН СССР и Мин-ва геологии СССР. Основан в 1959. Выходит в Москве 6 раз в год. Освещает проблемы металлогении, теории формирования, геологии, минералогии и геохимии рудных месторождений различных генетич. классов, а также методы их исследования. Тираж ок. 2600 экз. (1971).

ГЕОЛОГОРАЗВЕДОЧНЫЙ НЕФТЯНОЙ ИНСТИТУТ Всесоюзный (ВНИГНИ), научно-исследовательский ин-т Министерства геологии СССР, созданный в 1953 в Москве. Имеет Камский филиал в Перми и Грузинский филиал в Тбилиси, а также комплексные лаборатории в Оренбурге и Душанбе. Основные отделы и секторы: региональные (шесть), генезиса нефти и газа, ресурсов нефти и газа, опробования и испытания скважин, методики поисков и разведки нефтяных и газовых месторождений, экономики гео-логопоисковых и разведочных работ. Науч. проблематика: обоснование главных направлений геологопоисковых и разведочных работ на нефть и газ в СССР, прогнозная оценка нефтегазоносности терр. СССР, анализ состояния ресурсов нефти и газа, закономерности размещения нефтяных и газовых месторождений в Европ. части СССР, Ср. Азии, на Кавказе и Украине, генезис нефти и газа. Результаты исследований публикуются в Трудах (с 1954).

С. П. Максимов.

ГЕОЛОГОРАЗВЕДОЧНЫЙ НЕФТЯНОЙ ИНСТИТУТ Всесоюзный (ВНИГРИ), научно-исследовательский ин-т Министерства геологии СССР, образованный в 1929 в Ленинграде. Имеет Сахалинское отделение в Охе. Разрабатывает теорию образования углеводородов в природе, исследует закономерности формирования и размещения нефтяных и газовых месторождений и даёт науч. обоснование геологоразведочных работ на нефть и газ в Прибалтике, сев. областях Европ. части СССР, в Сибири, на Дальнем Востоке и в Казахстане. Результаты исследований в виде монографий или отдельных статей публикует в Трудах ВНИГРИ (1945, с 1930 по 1945 - Труды НИГРИ).

Лит.: Дьяков Б. Ф., Голубков И. А., Краткий обзор деятельности ВНИГРИ, Тр. Всесоюзного нефтяного научно-исследовательского геологоразведочного ин-та, 1959, в. 132.

С. Н. Симаков.

ГЕОМАГНЕТИЗМ, см. Земной магнетизм.

ГЕОМАГНИТНЫЕ ПОЛЮСЫ, см. Полюсы геомагнитные.

ГЕОМАГНИТОФОН (от гео. . . и магнитофон), геофон, снабжённый специальной приставкой для регистрации трудноуловимых звуков в подземных горных выработках. Применяется для определения места нахождения горнорабочих, застигнутых аварией в подземных выработках шахт и рудников. С помощью Г. прослушиваются (с одновременной записью на магнитную ленту) сигналы, подаваемые ударами по породе твёрдым предметом. Г. (рис.) позволяет отличать сигналы, подаваемые людьми, от посторонних звуков на расстоянии до 100 м.

ГЕОМЕРИДА (от гео. . . и греч. men's - доля, слой), живой покров, совокупность организмов Земли; см. Биосфера.

ГЕОМЕТРИЗАЦИЯ МЕСТОРОЖДЕНИЙ, изображение на графиках структурных и качественных особенностей месторождений полезных ископаемых. Г. м. включает изучение, систематизацию и матем. обработку морфологич. особенностей залежей полезных ископаемых, выяснение основных закономерностей и характера размещения полезных и вредных компонентов внутри рудных тел. Г. м. осуществляют по данным разведки и эксплуатации месторождений. К наиболее распространённым графикам относят: гипсометрич. план залежи, отражающий форму, размеры и элементы залегания; план изолиний содержания полезных и вредных компонентов, характеризующих их распределение в залежи; план изолиний линейных запасов полезного ископаемого, по к-рому можно определить его запасы на площади в 1 м2 на любом участке залежи; план изолиний линейных запасов полезных компонентов, позволяющий определить весовое количество соответствующего полезного компонента, приходящееся на площадь в 1 м2; план изомощностей залежи, дающий представление о мощности залежи на любом её участке; план изоглубин, позволяющий судить о глубине залегания того или иного участка залежи. Г. м. входит в науч. дисциплину горная геометрия.

Лит.: Рыжов П. А., Букринский В. А., Горная геометрия, М., 1958; Ушаков И. Н., Горная геометрия, 3 изд., М., 1962; Вилесов Г. И., Ивченко А. Н., Практикум по геометрии недр, Свердловск, 1956.

Н. Г. Жуков.

ГЕОМЕТРИЧЕСКАЯ АКУСТИКА, раздел акустики, в к-ром изучаются законы распространения звука на основе представления о звуковых лучах как линиях, вдоль к-рых распространяется звуковая энергия. Г. а.- предельный случай волновой акустики при переходе к бесконечно малой длине волны, поэтому методы Г. а. являются приближёнными и тем точнее отражают действительность, чем меньше длина волны. Осн. задача Г. а. состоит в вычислении траекторий звуковых лучей. Наиболее простой вид лучи имеют в однородной среде, где они представляют собой прямые линии. Уравнения Г. а. имеют в основном такую же форму, как и уравнения геометрической оптики. Для звуковых лучей справедливы те же законы отражения и преломления, что и для световых.

Методами Г. а. пользуются для практич. приложений в самых различных областях акустики. Напр., в архитектурной акустике свойство прямолинейности звуковых лучей даёт возможность весьма просто определять время реверберации. Действие эхолотов и гидролокаторов основано на измерении времени пробега звуковых лучей до отражающего объекта и обратно. Лучевыми представлениями пользуются при расчёте звуковых фокусирующих систем. На основе законов Г. а. удаётся создать приближённую теорию распространения звука в неоднородных средах (напр., в море, в атмосфере). Методы Г. а. имеют ограниченную область применения, т. к. самое понятие луча справедливо только в тех случаях, когда амплитуда и направление волны мало меняются на расстояниях порядка длины волны звука. В частности, для применения Г. а. требуется, чтобы размеры помещений или препятствий на пути звука были много больше длины волны звука. Если характерный для данной задачи размер становится сравнимым с длиной волны, то существенную роль начинает играть дифракция волн, к-рую Г. а. не охватывает.

ГЕОМЕТРИЧЕСКАЯ ИЗОМЕРИЯ (в органич. химии), явление, заключающееся в существовании соединений, различающихся только расположением заместителей относительно плоскости двойной связи или цикла (см. Изомерия). Г. и. комплексных соединений состоит в различном пространственном расположении лигандов около центрального иона.

ГЕОМЕТРИЧЕСКАЯ ОПТИКА, раздел оптики, в к-ром изучаются законы распространения света на основе представлений о световых лучах. Под световым лучом понимают линию, вдоль к-рой распространяется поток световой энергии. Понятие луча не противоречит действительности только в той мере, в какой можно пренебрегать дифракцией света на оптических неоднородностях, а это допустимо только тогда, когда длина световой волны много меньше размеров неоднородностей. Законы Г. о. позволяют создать упрощённую, но в большинстве случаев достаточно точную теорию оптических систем. Г. о. в основном объясняет образование изображений оптических, даёт возможность вычислять аберрации оптических систем и разрабатывать методы их исправления, вывести энергетич. соотношения в световых пучках, проходящих через оптич. системы. Вместе с тем все волновые явления, в т. ч. дифракционные, влияющие на качество изображений и определяющие разрешающую способность оптич. приборов, не рассматриваются в Г. о.

Представление о световых лучах возникло ещё в античной науке. Евклид, обобщив достижения своих предшественников, сформулировал закон прямолинейного распространения света и закон отражения света. В 17 в. в связи с изобретением ряда оптич. приборов (зрительная труба, лупа, телескоп, микроскоп и т. д.) и началом их широкого использования Г. о. бурно развивалась. Большая роль в этом развитии принадлежит И. Кеплеру, Р. Декарту и В. Снеллю, открывшему Снелля закон преломления света. Построение теоретич. основ Г. о. к сер. 17 в. было завершено установлением Ферма принципа, утверждающего, что луч света, вышедший из одной точки и проходящий через несколько сред с произвольными границами и меняющимся показателем преломления, попадает в другую точку за минимальное (точнее, за экстремальное) время. Для однородной среды принцип ферма сводится просто к закону прямолинейного распространения света. Законы преломления и отражения, исторически открытые ранее, также являются следствиями этого принципа, к-рый сыграл значит, роль в развитии и др. разделов физич.теории. С 18 в. Г. о., совершенствуя методы расчёта оптич. систем, развивалась как прикладная наука. После создания электродинамики классической было показано, что формулы Г. о. могут быть получены из уравнений Максвелла в качестве предельного случая, соответствующего переходу к исчезающе малой длине волны.

Г. о. является примером теории, позволившей при малом числе фундаментальных понятий и законов (представление о лучах света, законы отражения и преломления) получать много практически важных результатов. В теории оптич. устройств она сохранила большое значение до наст, времени. См. также Кардинальные точки, Линза, Эйконал.

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3).

ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ, последовательность чисел (a1, а2,...,аn,..), из к-рых каждое равно предыдущему, умноженному на постоянное для данной прогрессии число q (знаменатель Г. п.); напр. 2, 8, 32, .... q = 4. Если q > 1(q <1), то Г. п.- возрастающая (убывающая); при q<0 Г. п.- знакочередующаяся. Любой член Г. п. (аn) вычисляется по формуле: an = a1 qn-1', сумма (Sn) первых n членов Г. п.- по формуле:

ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ, решение нек-рых геом. задач при помощи вспомогат. инструментов (линейка, циркуль и т. п.), к-рые предполагаются абсолютно точными. В исследованиях по Г. п. выясняется круг задач, разрешимых с помощью заданного набора инструментов, и указываются способы решения этих задач. Г. п. обычно разделяются на построения на плоскости и в пространстве. Отд. задачи на Г. п. на плоскости рассматривались ещё в древности (напр., знаменитые задачи о трисекции угла, удвоении куба, квадратуре круга). Как и многие другие, они относятся к задачам на Г. п. с помощью циркуля и линейки. Г. п. на плоскости имеют богатую историю. Теория этих построений разработана датским геометром Г. Мором (1672) и затем итальянским инженером Л. Маскерони (1797). Значит, вклад в теорию Г. п. был сделан швейцарским учёным Я. Штейнером (1833). Лишь в 19 в. был выяснен круг задач, разрешимых с помощью указанных инструментов. В частности, отмеченные выше знаменитые задачи древности не разрешимы с помощью циркуля и линейки.

Г. п. на плоскости Лобачевского занимался сам Н. И. Лобачевский. Общая теория таких построений и построений на сфере была развита советским геометром Д. Д. Мордухай-Болтовским.

Г. п. в пространстве связаны с методами начертат. геометрии. Теория Г. п. представляет интерес лишь в части, связанной с практич. приложениями в начертат. геометрии.

Лит.: Адлер А., Теория геометрических построений, пер. с нем., 3 изд.. Л.. 1940; Четверухин Н. Ф., Методы геометрических построений, М., 1938; Штейнер Я., Геометрические построения, выполняемые с помощью прямой линии и неподвижного круга, пер. с нем., М., 1939; Александров И. И., Сборник геометрических задач на построение с решениями. 18 изд., М., 1950.

Э. Г. Позняк.

ГЕОМЕТРИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ, взаимно однозначные отображения прямой, плоскости или пространства на себя. Обычно рассматривают такие совокупности Г. п., что каждую конечную последовательность преобразований совокупности можно заменить одним преобразованием этой совокупности, а преобразование, обратное любому из рассматриваемых, также принадлежит данной совокупности. Такие совокупности Г. п. образуют т. н. группу преобразований. Примерами Г. п., образующих группу преобразований, могут служить движения плоскости (или пространства), аффинные преобразования, проективные преобразования.

Лит.: Моденов П. С., Пархоменко А. С., Геометрические преобразования, М., 1961.

ГЕОМЕТРИЧЕСКИЙ СТИЛЬ в иcскусстве, одна из ранних стадий развития древнегреческого иск-ва (9- 8 вв. до н. э.). Высокого мастерства в иск-ве Г. с. достигла вазопись. Декор вазГ. с., ясный и конструктивный, состоит из полос меандра, крестов, окружностей и т. д. В период развитого стиля (дипилонские вазы, 8 в. до н. э.) он включает также наивные, сильно геометризованные изображения человека. Сходный характер носят мелкая скульптура и рельефы на ювелирных украшениях.

Лит.: М a t z Fr., Geschicnte der griechischen Kunst, Bd 1. Die geometrische und die fruharchaische Form. Textband, Fr./M., [1950].

Геометрический стиль. 1. Кратер с о. Кипр. 2-я четв. 8 в. до н. э. Метрополитен-музей. Нью-Йорк. 2. Скифос из Камироса (о. Родос). Ок. 700 до н. э. Британский музей. Лондон. 3. Щит из Черветери (Италия). Бронза. 7 в. до н. э. Ватиканские музеи.

Воин, Бронзовая статуэтка. 2-я пол. 8 в. до н. э. Национальный археологический музей. Афины.

ГЕОМЕТРИЧЕСКОЕ СРЕДНЕЕ, число a*, равное корню п-й степени из произведения п данных положительных чисел (a1, а2, ..., аn):

Г. с. двух чисел а и b, равное у ab, наз. также средним пропорциональным между а и b.



ГЕОМЕТРИЯ (греч. geometria, от ge - Земля и metreo - мерю), раздел математики, изучающий пространственные отношения и формы, а также другие отношения и формы, сходные с пространственными по своей структуре.

Происхождение термина Г.*, что буквально означает землемерие, можно объяснить следующими словами, приписываемыми др.-греч. учёному Евдему Родосскому (4 в. до н. э.): Геометрия была открыта египтянами и возникла при измерении Земли. Это измерение было им необходимо вследствие разлития р. Нил, постоянно смывавшего границы. Уже у древних греков Г. означала матем. науку, в то время как для науки об измерении Земли был введён термин геодезия. Судя по сохранившимся отрывкам древнеегип. сочинений, Г. развилась не только из измерений Земли, но также из измерений объёмов и поверхностей при земляных и строит, работах и т. п.

Первоначальные понятия Г. возникли в результате отвлечения от всяких свойств и отношений тел, кроме взаимного расположения и величины. Первые выражаются в прикосновении или прилегании тел друг к другу, в том, что одно тело есть часть другого, в расположении между, внутри и т. п. Вторые выражаются в понятиях больше, меньше, в понятии о равенстве тел.

Путём такого же отвлечения возникает понятие геом. тела. Геом. тело есть абстракция, в к-рой сохраняются лишь форма и размеры в полном отвлечении от всех других свойств. При этом Г., как свойственно математике вообще, совершенно отвлекается от неопределённости и подвижности реальных форм и размеров и считает все исследуемые ею отношения и формы абсолютно точными и определёнными. Отвлечение от протяжения тел приводит к понятиям поверхности, линии и точки. Это явно выражено, напр., в определениях, данных Евклидом: линия есть длина без ширины, поверхность есть то, что имеет длину и ширину. Точка без всякого протяжения есть абстракция, отражающая возможность неограниченного уменьшения всех размеров тела, воображаемый предел его бесконечного деления. Дальше возникает общее понятие о геом. фигуре, под к-рой понимают не только тело, поверхность, линию или точку, но и любую их совокупность.

Г. в первоначальном значении есть наука о фигурах, взаимном расположении п размерах их частей, а также о преобразованиях фигур. Это определение вполне согласуется с определением Г. как науки о пространственных формах и отношениях. Действительно, фигура, как она рассматривается в Г., и есть пространственная форма; поэтому в Г. говорят, напр., шар, а не тело шарообразной формы; расположение и размеры определяются пространств, отношениями; наконец, преобразование, как его понимают в Г., также есть нек-рое отношение между двумя фигурами - данной и той, в к-рую она преобразуется.

В современном, более общем смысле, Г. объемлет разнообразные матем. теории, принадлежность к-рых к Г. определяется не только сходством (хотя порой и весьма отдалённым) их предмета с обычными пространственными формами и отношениями, но также тем, что они исторически сложились и складываются на основе Г. в первоначальном её значении и в своих построениях исходят из анализа, обобщения и видоизменения её понятий. Г. в этом общем смысле тесно переплетается с другими разделами математики и её границы не являются точными. См. разделы Обобщение предмета геометрии и Современная геометрия.

Развитие геометрии. В развитии Г. можно указать четыре основных периода, переходы между к-рыми обозначали качественное изменение Г.

Первый - период зарождения Г. как матем. науки - протекал в Др. Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геом. сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае - зависимостей между геом. величинами. Этот момент не может быть датирован. Самое раннее