БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

чл. Исполнит, комиссии Петерб. к-та РСДРП.

Подвергался арестам и ссылкам. В 1917 чл. к-та воен. парт, орг-ции Выборга, делегат 7-й (Апрельской) Всероссийской конференции и 6-го съезда РСДРП(б). Активный участник Окт. революции и Гражд. войны. В 1918-22 секретарь Уральского обл., пред. Вятского губ., пред. Оренбургского губ., секретарь Киргизского и Крымского обл. к-тов РКП(б). С 1922 на профсоюзной работе. В 1924 избран чл. ЦК КП(б)У, в 1925 чл. ЦИК СССР, пред. Всеукраинского союза горняков, в 1927 пред. Всеукраинского совета профсоюзов, чл. Оргбюро ЦК КП(б)У, в 1929 чл. Президиума и секретарь ВЦСПС. В 1930-31 зам. наркома РКИ СССР и чл. Президиума ЦКК ВКП(б). В 1931-32 первый зам. пред. ОГПУ. В 1932-33 чл. ЦК, Политбюро, Оргбюро и секретарь ЦК КП(б)У по Донбассу. В 1933-35 прокурор СССР, затем секретарь ЦИК СССР. Избирался чл. ЦК на 15-м и чл. ЦКК на 12,13, 16-м съездах партии, чл. КПК на 17-м съезде ВКП(б). Лит.: Блинов А. С., И. Акулов, М., 1967.

АКУЛОВЫЕ, подкласс рыб; то же, что пластиножаберные.

АКУЛЫ, рыбы отряда акулообразных подкласса пластиножаберных. Представлены тремя подотрядами: настоящие А., древние А. и рогатые А. Настоящие A. (Selachoidei): длиной от 0,5 м (чёрная колючая А.) до 20 м (гигантская А.); тело веретеновидное; жаберных щелей с каждой стороны 5 (лишь у пилоноса - 6); чешуя плакоидная; рот на нижней стороне головы; скелет хрящевой; плавательного пузыря нет. Распространены очень широко: обитают в прибрежных и открытых водах, нек-рые в реках (напр., в Амазонке, Ганге). В ССОР - в Баренцевом, Балтийском, Чёрном, Азовском и дальневосточных морях.

Большинство откладывает яйца (крупные, в роговидной оболочке), нек-рые живородящи. Большая часть А.- хищники. Питаются рыбами, донными беспозвоночными, иглокожими, моллюсками, червями. Иногда нападают на человека. Имеют промысловое значение. Основная масса добывается в тропич. водах; в СССР ловятся: колючая А., нокотница, полярная, сельдевая и др. Из печени А. добывают рыбий жир, мясо употребляют в пищу, из скелета делают рыбий клей. Древние A. (Hexanchoidei) имеют 6 или 7 жаберных щелей с каждой стороны. Два семейства: плащеносные A. (Chlamy-doselachidae) с единств, видом - Chlamy-doselachus anguineus (широко распространённым, но редко встречающимся; длина тела ок. 1,5 м) и гребнезубые акулы (Не-xanchidae). Рогатые A. (Heterodon-toidei) - рыбы длиной до 1,5 м. Один род (Heterodontus), включающий 4 вида; распространены в субтропич. и тропич. частях Тихого и Индийского ок.

Акулы (сверху вниз); гренландская, морской кот, колючая, морская лисица, плащеносная, сельдевая.

Лит.: Никольский Г. В., Частная ихтиология, 2 изд., М., 1954.

Г. В. Никольский.

АКУМЕТРИЯ, то же, что аудиометрия.

АКУРЕЙРИ (Akureyri), город на С. Исландии, на берегу Эйя-фьорда. Второй по размеру и экономич. значению город и порт в стране. 10 тыс. жителей (1967). Рыболовецкий центр, произ-во рыбьего жира. С.-х. эксперимент, станция. Населённый пункт А. известен с 1786.

АКУСМА (греч. akusma - услышанное), слуховое представление, участвующее, по мнению нек-рых фонетистов, в образовании комплексного образа звука, напр, представление "носового характера" звуков "н" и "м" в рус. языке, ср. кинема. Термин введён И. А. Бодуэном де Кур-тенэ. А. А. Леонтьев.

АКУСТИКА (от греч. akustikos - слуховой, слушающийся), вузком смысле слова - учение о звуке, т. е. об упругих колебаниях и волнах в газах, жидкостях и твёрдых телах, слышимых человеческим ухом (частоты таких колебаний находятся в диапазоне 16 гц - 20 кгц); в широком смысле - область физики, исследующая упругие колебания и волны от самых низких частот (условно от 0 гц) до предельно высоких частот 1012 - 1013 гц, их взаимодействия с веществом и применения этих колебаний (волн).

Исторический очерк. А.- одна из самых древних областей знания, зародившаяся из потребности дать объяснение явлениям слуха и речи и в особенности музыкальным звукам и инструментам. Ещё др.-греч. математик и философ Пифагор (6 в. до н. э.) обнаружил связь между высотой тона и длиной струны или трубы; Аристотель (4 в. до н. э.) понимал, что звучащее тело вызывает сжатия и разрежения воздуха, и объяснял эхо отражением звука от препятствий.

Период средневековья мало что дал развитию А.; её прогресс становится заметным, начиная с эпохи Возрождения. Итал. учёный Леонардо да Винчи (15- 16 вв.) исследовал отражение звука, сформулировал принцип независимости распространения звуковых волн от разных источников.

Историю развития А., как физ. науки, можно разбить на 3 периода. Первый период - от начала 17 в. до нач. 18 в.- характеризуется исследованиями системы муз. тонов, их источников (струны, трубы), скорости распространения звука. Г. Галилей обнаружил, что звучащее тело испытывает колебания и что высота звука зависит от частоты этих колебаний, а интенсивность звука - от их амплитуды. Франц. учёный М. Мерсенн, следуя Галилею, уже мог определить число колебаний звучащей струны; он впервые измерил скорость звука в воздухе. Р. Гук (Англия) устанавливает на опыте пропорциональность между деформацией тела и связанным с ней напряжением - осн. закон теории упругости и А., а X. Гюйгенс (Голландия) - важный принцип волнового движения, назв. его именем (см. Волиы).

Второй период охватывает два века - от создания основ механики И. Ньютоном (конец 17 в.) и до нач. 20 в. В этот период А. развивается как раздел механики. Создаётся общая теория меха-нич. колебаний, излучения и распространения звуковых (упругих) волн в среде, разрабатываются методы измерения характеристик звука (звукового давления в среде, импульса, энергии и потока энергии звуковых волн, скорости распространения звука). Диапазон звуковых волн расширяется и охватывает как область инфразвука (до 16 гц), так и ультразвука (св. 20 кгц). Выясняется физ. сущность тембра звука (его "окраски"),С работ Ньютона начинается расцвет классич. физики. Механика, гидродинамика и теория упругости, теория волн, акустика и оптика развиваются в тесной связи друг с другом. Члены Петерб. Академии наук Л. Эйлер и Д. Бернулли и франц. учёные Ж. Д'Аламбер и Ж. Лаг-ранж разрабатывают теорию колебаний струн, стержней и пластинок, объясняют происхождение обертонов. Нем. учёный Э. Хладни (кон. 18 - нач. 19 вв.) экспериментально исследует формы звуковых колебаний, совершаемых различными звучащими телами - мембранами, пластинами, колоколами. Т. Юнг (Англия) и О. Френель (Франция) развивают представления Гюйгенса о распространении волн, создают теорию интерференции и дифракции волн. X. Доплер (Австрия) устанавливает закон изменения частоты волны при движении источника звука относительно наблюдателя. Огромное значение не только для А., но и для физики в целом имело создание методов разложения сложного колебательного процесса на простые составляющие - анализа колебаний - и синтеза сложных колебаний из простых. Матем. метод разложения периодически повторяющихся процессов на простые гармонич. составляющие был найден франц. учёным Ж. Фурье. Экспериментально анализ звука - разложение его в спектр гармонич. колебаний с помощью набора резонаторов - и синтез сложного звук я из простых составляющих осуществил гм. учёный Г. Гельмгольц. Подбором каг-ертонов с резонаторами Гельмгольцу удалось искусственно воспроизвести различные гласные. Он исследовал состав муз. звуков, объяснил тембр звука характерным для него набором добавочных тонов (гармоник). На основе своей теории резонаторов Гельмгольц дал первую физ. теорию уха как слухового аппарата. Его исследования заложили основу физиологической акустики и музыкальной акустики. Весь этот этап развития А. подытожен англ, физиком Рэлеем (Дж. Стретт) в его классич. труде "Теория звука".

На рубеже 19 и 20 вв. важные работы по А. были выполнены рус. физиком Н. А. Умовым, к-рый ввёл понятие плотности потока энергии для упругих волн. Амер. учёный У. Сэбин заложил основы архитектурной акустики. Рус. физик П. Н. Лебедев (вместе с Н. П. Неклепае-вым) выделил из резкого звука электрич. искры ультразвуковые волны с частотами до неск. сот кгц и исследовал .их поглощение в воздухе.

К нач. 20 в. интерес к А. ослабевает; А. считают теоретически и экспериментально завершённой областью науки, в к-рой остались нерешёнными лишь задачи частного характера.

Третий, современный период в истории А., начинающийся в 20-х гг. 20 в., связан, прежде всего, с развитием электроакустики и созданием радиотехники и радиовещания. Перед А. встал новый круг проблем - преобразование звуковых сигналов в электромагнитные и обратно, их усиление и неискажённое воспроизведение. В то же время радиотехника и электроакустика открыли невиданные ранее возможности развития А. Электроакустика появилась ещё в последней четверти 19 в. В 1876 был изобретён телефон (Белл, США), в 1877 - фонограф (Эдисон, США). В 1901 была разработана магнитная запись звука, применённая затем в магнитофоне и звуковом кино. В нач. 20 в. электромеханические преобразователи звука были применены в громкоговорителях, а в 20-х гг. стали основой всей совр. акустич. аппаратуры.

Электронная лампа дала возможность усиления чрезвычайно слабых акустич. сигналов, преобразованных в электрические. Были разработаны методы радио-акустич. измерений, анализа и воспроизведения звука. Эти новые возможности революционизировали А., превратив её из считавшейся завершённой области механики в самостоятельный раздел совр. физики и техники.

Развитие А. в 1-й пол. 20 в. получило мощный импульс в связи с запросами военной техники. Задача определения положения и скорости самолёта (звуковая локация в воздухе), подводной лодки (гидролокация), определение места, времени и характера взрыва, глушение шумов самолёта - все эти проблемы требовали более глубокого изучения механизма образования и поглощения звука, распространения звуковых (в частности, ультразвуковых) волн в сложных условиях. Проблемы генерации звука стали предме* том обширных исследований и в связи с развитием общей теории колебаний, охватывающей воедино механич., электрич. и электромеханич. колебательные процессы. В 20-х и 30-х гг. много работ было посвящено теории автоколебаний - самоподдерживающихся колебаний системы, связанной с постоянным источником анергии; большой вклад в разработку этой теории внесла сов. школа физиков, возглавлявшаяся Л. И. Мандельштамом и Н. Д. Папалекси. Особый интерес вызвал вопрос о распространении звуковых волн большой интенсивности (напр., взрывных волн); работы рус. физиков А. А. Эй-хенвальда и Н. Н. Андреева в этой области внесли значит, вклад в нелинейную акустику, предметом исследования которой являются мощные звуковые поля. М. Лайтхилл (Англия, 1952) дал общую теорию аэродинамич. генерации звука, изучающую возникновение звука в движущейся среде за счёт неустойчивости потока газа. Н. Н. Андреев и И. Г. Русаков (1934), Д. И. Блохинцев (1947) разработали основы акустики движущихся сред.

Первые успехи в гидроакустике были достигнуты франц. физиком П. Ланже-веном (1916), применившим ультразвуковые волны для измерения глубины моря и обнаружения подводных лодок. Явление сверхдальнего распространения звука взрыва в море в подводных звуковых каналах было открыто независимо американскими учёными (М. Ивингом и Д. Ворцелем, 1944) и советскими учёными (Л. М. Бреховских, Л. Д. Розенбергом, 1946). Проблемам звукопоглощения и звукорассеяния, которые приобрели особую актуальность в связи с развитием архитектурной и строительной акустики, были посвящены исследования С. Н. Ржевкина, Г. Д. Малюжинца и В. В. Фурдуева. Большое внимание было уделено изучению акустич. шумов и методам их устранения.

Изучение влияния структуры среды на распространение звука в свою очередь создало возможность применения звуковых волн для зондирования среды, в частности атмосферы; это привело к развитию атмосферной акустики.

В последние два десятилетия чрезвычайно большое значение приобрели исследования ультразвука, особенно высоких частот и больших интенсивностей, ставшего средством изучения структуры и свойств вещества. Ещё в 20-х гг. сов. учёный С. Я. Соколов применил ультразвук для дефектоскопии металлов. В Германии X. О. Кнезер (1933) обнаружил явление сильного поглощения и дисперсии ультразвука в многоатомных газах. Позднее дисперсия и аномальное поглощение ультразвука были обнаружены также и в жидкостях. Общая теория этих явлений, т. н. релаксационная теория, была дана Л. И. Мандельштамом и М. А. Леонтовичем (1937). Ультразвуковые колебания высокой частоты вызывают также перестройку структуры жидкостей, диссоциацию молекул и мн. другие эффекты. На стыке А. и оптики Мандельштам (1918, 1926) и Л. Бриллюэн (Франция, 1922) создали теорию рассеяния света на ультразвуковых волнах в жидкостях и твёрдых телах (см. Мандельштама-Бриллюэна явление). Это явление оказалось важным для изучения молекулярной структуры вещества.

Круг вопросов, связанных с влиянием молекулярной структуры вещества на распространение ультразвука, называют молекулярной акустикой, к-рая изучает поглощение и дисперсию ультразвука, в многоатомных газах, жидкостях и твёрдых телах. Ультразвук оказался не только средством исследования, но и мощным орудием воздействия на вещество.

Важное значение приобрели исследования гиперзвука (частоты 1 Ггц и выше). Интенсивно исследуются взаимодействия гиперзвуковых волн с электронами в металлах и полупроводниках.

Глубокие преобразования произошли и в старых разделах А. В сер. 20 в. начинается быстрое развитие психофизиологической акустики, вызванное необходимостью разработки методов неискажённой передачи и воспроизведения множества звуковых сигналов - речи и музыки - по ограниченному числу каналов связи. Эти вопросы А. входят в круг проблем общей теории информации и связи (см. Информации теория. Кибернетика). Исследовались механизмы образования различных звуков речи, характер их звукового спектра, основные показатели качества речи, воспринимаемой на слух. Созданы приборы видимой речи, дающие видимые изображения различных звуков (см. также Звукового поля визуализация). Разрабатываются методы кодирования речи (сжатой передачи её основных элементов) и её расшифровки (синтеза), развернулись исследования механизмов слухового восприятия, ощущения громкости, определения направления прихода звука (венг. учёный Д. Бекеши). В этой области А. сомкнулась с физиологией органов чувств и биофизикой. Таким образом, совр. А. по своему содержанию и значению далеко перешагнула те границы, в к-рых она развивалась до 20 в.

Основные разделы А. Совр. А. подразделяют на общую, прикладную и психо-физиологич.

Общая А. занимается теоретич. и экспериментальным изучением закономерностей излучения, распространения и приёма упругих колебаний и волн в различных средах и системах; условно её можно разделить на теорию звука, физическую А. и нелинейную А. Теория звука пользуется общими методами, разработанными в теории колебаний и волн. Для колебаний и волн малой амплитуды принимается принцип независимости колебаний и волн (суперпозиции принцип), на основе к-poro определяют звуковое поле в разных областях пространства и его изменение во времени.

На распространение, генерацию и приём упругих волн оказывает влияние огромное число факторов, связанных со свойствами и состоянием среды. Рассмотрением этого занимается физ. А. К её задачам относятся, в частности, изучение зависимости скорости и поглощения упругих волн от темп-ры и вязкости среды и др. факторов.

К важным вопросам физ. А. относятся также взаимодействие элементарных звуковых волн (фононов) с электронами и фотонами. Эти взаимодействия становятся особенно существенными на очень высоких ультразвуковых и гиперзвуковых частотах при низких темп-pax. В области таких частот и темп-р начинают проявляться квантовые эффекты. Этот раздел физ. А. иногда наз. квантовой А. Нелинейная А. изучает интенсивные звуковые процессы, когда принцип суперпозиции не выполняется и звуковая волна при распространении изменяет свойства среды. Этот раздел А., очень сложный в теоретическом отношении, быстро развивается (как и теория нелинейных волновых процессов в оптике и электродинамике).

Прикладная А. - чрезвычайно обширная область, к к-рой относится прежде всего электроакустика. Сюда же относятся акустические измерения - измерения величин звукового давления, интенсивности звука, спектра частот звукового сигнала и т. д. Архитектурная и строительная А. занимается задачами получения хорошей слышимости речи и музыки в закрытых помещениях и снижением уровней шума, а также разработкой звукоизолирующих и звукопоглощающих материалов. Прикладная А. изучает также шумы и вибрации и разрабатывает способы борьбы с ними. Изучением распространения звука в океане и возникающими при этом явлениями: рефракцией звука, реверберацией при отражении звукового сигнала от поверхности моря и его дна, рассеянием звука на неоднород-ностях и т. д. занимаются гидроакустика и гидролокация.

Атмосферная А. исследует особенности распространения звука в атмосфере, обусловленные неоднородностью её структуры, и является частью метеорологии. Геоакустика изучает применения звука в инженерной геофизике и геологии.

Огромное прикладное значение как в технике физ. эксперимента, так и в пром-сти, на транспорте, в медицине и др. имеют ультразвук и гиперзвук. Напр., в измерит. технике - ультразвуковые линии задержки, измерение сжимаемости жидкостей, модулей упругости твёрдых тел и т. д.; в промышленном контроле - дефектоскопия металлов и сплавов, контроль протекания хим. реакций и т. д.; технологич. применения - ультразвуковое сверление, очистка и обработка поверхностей, коагуляция аэрозолей и др.

Психофизиологическая А. занимается изучением звукоизлучаю-щих и звукопринимающих органов человека и животных, проблемами речеобра-зования, передачи и восприятия речи. Результаты используются в электроакустике, архитектурной А., системах передачи речи, теории информации и связи, в музыке, медицине, биофизике и т. п. К её разделам относятся: речь, слух, психологич. А., биол. А.

Вопросами А. в СССР занимаются: в Москве - Акустич. ин-т АН СССР, Н.-и. институт строительной физики, Научно-исследовательский кинофото-институт, Ин-т звукозаписи; в Ленинграде - Ин-т радиоприёма и акустики; ряд