БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ий, представленных на конгресс; фундаментальные монографии и сборники, отражающие уровень географии в принимающей стране; календарь конгресса, путеводители экскурсий, список членов конгресса с указанием их адресов. После конгресса публикуются труды, содержащие полные тексты всех научных докладов и обзоры дискуссий.

Накопившиеся за 100 лет материалы Г. к. отражают, хотя и не в полной мере, ряд общих тенденций в эволюции геогр. исследований. На первых десяти Г. к. св. 1/3 всех выступлений посвящалось описанию путешествий в мало известные науке области земного шара, вопросам геодезии и картографии, содержанию и методам геогр. образования. Позднее секция путешествий исчезает из программы Г. к., основное внимание участников обращается на результаты углублённых исследований природной среды, естественных ресурсов, хозяйства, населения и населённых пунктов по их компонентам и региональным сочетаниям. На Г. к. возрастает количество сообщений по прикладным аспектам географии, имеющим важное экономич. значение.

Географы России участвовали в работе первых Г. к. В 20-40-х гг. в связи со сложной для СССР междунар. обстановкой сов. географы были только на двух Г. к. (1931 в Париже, 1934 в Варшаве). Начиная с 1956 делегации географов СССР принимают активное участие на сессиях Г. к., где представляют сов. геогр. науку, основанную на диалектико-материалистич. методологии. В Советском Союзе подготовку к Г. к. осуществляет Национальный комитет сов. географов при Академии наук СССР.

В. В. Анненков.

ГЕОГРАФИЧЕСКИЕ КООРДИНАТЫ, величины, определяющие положение точки на земной поверхности: широта Ф, измеряемая углом между отвесной линией в данной точке и плоскостью земного экватора, и долгота X, измеряемая двугранным углом между плоскостью меридиана данной точки и плоскостью начального меридиана (см. рис.). Широта и долгота определяются из наблюдений небесных светил с помощью угломерных инструментов (напр., универсального инструмента, секстанта и др.), установленных с помощью уровня, и из сравнения местного времени, полученного из астрономич. наблюдений, с всемирным временем (см. Время). Г. к., так определённые, наз. астрономическими координатами точки земной поверхности.

Широты отсчитываются от 0° до 90° по обе стороны от экватора, причём в Сев. полушарии Земли они считаются положительными, в Южном - отрицательными. Долготы отсчитываются от начального меридиана от 0° до 360° либо к востоку (восточная долгота), либо к западу (западная долгота; по международному счёту - положительная). Применяется также система отсчёта от 0° до 180° к востоку к западу от начала меридиана.

Географические координаты точки М: широта ф (угол МСN), долгота X (угол OCN).

По международному соглашению за начальный ("первый", "нулевой") меридиан принят меридиан, проходящий через меридианный круг старой Гринвичской обсерватории в Гринвиче (Лондон) до её перевода в замок Хёрстмонсо. Прежде для этой цели служили в разное время меридианы островов Иерро (Канарские острова), Парижской и Берлинской обсерваторий и др. В России в 19 в. счёт долгот вёлся от меридиана Пулковской обсерватории.


0619.htm
ГЕОДЕЗИЧЕСКАЯ АСТРОНОМИЯ, раздел практической астрономии, наиболее тесно связанный с геодезией и картографией; изучает теорию и методы определения широты ф и долготы X, места, а также азимута а направления на земной предмет и местного звёздного времени 5 из астрономич. наблюдений при геодезич, и картографич. работах. Т. к. эти наблюдения производятся в полевых условиях, то Г. а. часто называют полевой астрономией. Точка земной поверхности, в к-рой широта, долгота и азимут определены из астрономич. наблюдений, наз. астрономическим пунктом. Предмет Г. а. состоит в изучении: а) переносных астрономич. инструментов, б) теорий наблюдения небесных светил и методов определения ф, X, а и s и в) методов обработки результатов астрономич. наблюдений. В Г. а. применяются малые, или переносные, астрономич. инструменты, позволяющие измерять зенитные расстояния и направления на небесные светила, а также горизонтальные углы между различными направлениями. Основными инструментами в Г. а. служат: универсальный инструмент, полевой хронометр и радиоприёмник для приёма сигналов времени.

В Г. а. разработан ряд способов астрономич. наблюдений, различающихся в зависимости от того, какие величины определяются (время, широта, долгота или азимут), какие светила для этого наблюдаются (звёзды или Солнце) и как и какие величины непосредственно измеряются при наблюдениях небесного светила (зенитное расстояние z, высота h, азимут а* и момент Т прохождения светила через избранную плоскость). Выбор этих способов зависит от поставленной задачи, точности её решения, наличия инструментов и т. д. При этом небесные координаты наблюдаемого светила, а именно его прямое восхождение а и склонение 8, считаются известными; они приводятся в астрономич. ежегодниках и каталогах звёзд.

Соединив на небесной сфере (рис.) полюс PN, зенит места Z и наблюдаемое светило а дугами больших кругов, получим т. н. параллактич. треугольник , в к-ром угол при вершине Z есть дополнение азимутасветила до 180° и угол при вершине равен часовому углу t светила.

Все способы астрономич. определений основаны на решении параллактического треугольника после измерения его нек-рых элементов (см. Сферическая астрономия). Так, измерив зенитное расстояние z светила в момент Т по хронометру и зная широту ф места, можно определить часовой угол t светила из выражения

и по равенству найти поправку и к показанию хронометра и местное звёздное время s. Зная поправку хронометра и и измерив зенитное расстояние г светила, можно определить широту места. Поправку хронометра выгодно определять из наблюдений звёзд в первом вертикале, а широту места - в меридиане, т. е. в кульминации небесного светила. Если измерить зенитные расстояния двух звёзд, расположенных в меридиане к Ю. или С. от зенита места, то тогда

Особенно удобны способы, основанные на измерении окулярным микрометром малых разностей зенитных расстояний сев. и юж. звёзд в меридиане (см. Таль-котта способ). В способах соответственных высот отмечают моменты 7\ и Т2 прохождений двух звёзд через один и тот же альмукантарат. Если известна ф, то получают и (см. Цингера способ), а если известна и, то определяют ф (см. Певцова способ). Из наблюдений серии равномерно распределённых по азимуту звёзд на постоянной высоте 45° или 30° определяют ф и X (см. Мазаева способ).

Азимут а* небесного светила определяют, измеряя его часовой угол или зенитное расстояние и зная широту ф места наблюдения. Прибавляя к азимуту наблюдаемого светила (обычно Полярной звезды) горизонтальный угол Q между ним и земным предметом, получают азимут а земного предмета.

Разность долгот двух пунктов равна разности местных звёздных времён в этих пунктах или разности поправок хронометра, отнесённых к одному физич. моменту по известному ходу часов, так что

- (Т + и,) = и2 - и. + Т2 - T,. Долготы отсчитываются от меридиана Гринвича. Поэтому Поправки хронометра и относительно местного звёздного времени s определяют из наблюдений звёзд, a U относительно гринвичского звёздного времени S - из приёма ритмич. сигналов времени по радиотелеграфу. В совр. высокоточных работах ошибки определения широты, долготы и азимута не превышают

Лит.: Цинге р Н. Я., Курс практической астрономии, М., 1924; Вентцель М. К., Полевая астрономия, ч. 1 - 2, М., 1938-40; Блажко С. Н., Курс практической астрономии, М.- Л., 1951; Цветков К. А.. Практическая астрономия, 2 изд., М., 1951; Кузнецов А. Н., Геодезическая астрономия, М., 1966.

А .В. Буткевич.

ГЕОДЕЗИЧЕСКАЯ ГРАВИМЕТРИЯ, раздел геодезии, в к-ром рассматриваются теории и методы использования результатов измерения силы тяжести для решения научных и практических задач геодезии. Основное содержание Г. г. составляют теории н методы определения внеш. поля потенциала W силы тяжести g Земли по измерениям на земной поверхности S и астрономо-геодезич. материалам. Г. г. включает также теорию нивелирных высот и обработку астрономо-геодезич. сетей в связи с особенностями гравитационного поля Земли. Обычно из этого поля выделяют правильное и известное поле потенциала U т. н. нормальной Земли сравнения, представляемой в виде уровенного эллипсоида. Центры масс и оси вращения реальной и нормальной Земли совпадают. Осн. задачу Г. г. сводят к выводу возмущающего потенциала Т = W - U, к-рый определяют из решения граничных задач матем. физики. На земной поверхности Т удовлетворяет граничному условию

где Н - высота над эллипсоидом, - сила тяжести в поле U, - нормальная высота, выводимая из условия, что приращениеинтеграл от gdн потенциала W от начала счёта высот измерено в поле U, dh - элементарное превышение геом. нивелирования. Для вывода Т разработано неск. методов, к-рые сводятся к решению соответствующих интегральных уравнений.

В равнинных районах нек-рые прак-тич. задачи можно решать упрощёнными методами вывода Т и его производных. Эти методы основаны на условии вводимом после вычисления разностей Такой подход, напр., допустим при астрономо-гравиметрическом нивелировании. В этом случае задачи Г. г. будут решены в явном виде замкнутыми формулами. Значение Т на земной поверхности определяет формула Стокса (1849)

где

R - радиус земной сферы,

- её элемент и ф - дуга большого круга между фиксированной точкой и те кущей точкой, в к-рой задана сила тяжести. Эта формула описывает внешнее гравитационное поле земной сферы. Из неё можно вывести выражение для любого элемента гравитационного поля Земли в равнинных её областях.

Совр. Г. г. основана на работах (1945-60) М. С. Молоденского и изучает способы решения граничных задач, условия их разрешимости, плотность и точность необходимых измерений.

Лит.: Молоденский М. С., Юркина М. И., Еремеев В. Ф., Методы изучения внешнего гравитационного поля и фигуры Земли, "Тр. Центрального научно-исследовательского ин-та геодезии, аэросъёмки и картографии", I960, в. 131; Бровар В. В., Магницкий В. А., Шимберев Б. П., Теория фигуры Земли, М., 1961.

М. И.Юъкина.

ГЕОДЕЗИЧЕСКАЯ ЗАДАЧА, связана с определением взаимного положения точек земной поверхности и подразделяется на прямую и обратную задачу. Прямой Г. з. наз. вычисление геодезических координат - широты и долготы нек-рой точки, лежащей на земном эллипсоиде, по координатам др. точки и по длине и азимуту геодезической линии, соединяющей эти точки. Обратная Г. з. заключается в определении по гео-дезич. координатам двух точек на земном эллипсоиде длины и азимута геодезич. линии между этими точками. В зависимости от длины геодезич. линии, соединяющей рассматриваемые точки, применяются различные методы и формулы, разработанные в геодезии. По размерам принятого земного эллипсоида составляются таблицы, облегчающие решение Г. з. и рассчитанные на использование определённой системы формул. Г. з. в том и другом виде возникает при обработке триангуляции, а также во всех тех случаях, когда необходимо определить взаимное положение двух точек по длине и направлению соединяющей их линии или же расстояние и направление между этими точками по их геодезич. координатам. В ряде случаев Г. з. решают в пространственных прямоугольных координатах по формулам аналитич. геометрии в пространстве. В этих случаях вместо длины и азимута геодезич. линии, соединяющей две точки, используют длину и пространственные компоненты направления прямой линии между этими точками.

Лит.: Красовский Ф. Н., Руководство по высшей геодезии, ч. 2, М., 1942; Картографические таблицы. Эллипсоид ЦНИИГАиК, ;Тр. Центрального научно-исследовательского ин-та геодезии, аэросъёмки и картографии, 1945, в. 41.

ГЕОДЕЗИЧЕСКАЯ СЕТЬ, система точек земной поверхности, взаимное положение к-рых определено в нек-рой единой системе координат и высот над ур. м. на основании геодезич. измерений. Координаты геодезич. пунктов Г. с. определяются преим. методом триангуляции или полигонометрии. Для определения координат пунктов Г. с. используют также результаты наблюдений искусств, спутников Земли, к-рые рассматриваются как подвижный носитель координат или как промежуточная точка, служащая для передачи координат на большие расстояния (см. Спутниковая геодезия). Высоты пунктов Г. с. определяют методами нивелирования. Пункты Г. с. закрепляются на местности геодезическими знаками и являются исходной основой и опорными пунктами при картографировании земной поверхности и геодезич. измерениях на местности в связи с различными инженерными изысканиями и хоз. мероприятиями.

А. А. Изотов.

ГЕОДЕЗИЧЕСКИЕ ЗНАКИ, наземные сооружения и подземные устройства, к-рым и обозначаются и закрепляются на местности геодезические пункты. Наземная часть Г. з. на пунктах триангуляции и полигонометрии обеспечивает также взаимную видимость между ними и служит штативом для установки измерительного геодезического инструмента и предмета визирования.

В зависимости от условий местности и расстояний между пунктами наземная часть Г. з. имеет различную высоту и конструкцию. При взаимной видимости смежных геодезич. пунктов с земли наружные Г. з. представляют каменные столбы либо простые деревянные или металлич. пирамиды высотой до 6-8 м. Если требуется высота Г. з. от 6-8 м до 15-18 м, то их строят в виде двойных усечённых пирамид, из к-рых внутренняя является штативом для инструмента, а внешняя несёт площадку для наблюдателя и визирную цель. При высотах более 15-18 м Г. з. являются сложными сигналами, в к-рых ноги внутр. пирамиды опираются на столбы внеш. пирамид (см. Сигнал геодезический).

Подземная часть Г. з. на пунктах триангуляции и полигонометрии представляет систему бетонных монолитов (или закреплённую в бетонном основании металлическую трубу с вделанной в неё маркой), на к-рых имеется отверстие или обозначена точка, являющаяся собственно геодезич. пунктом и называемая центром пункта. Пункты нивелирования обозначаются и закрепляются заложенными в грунт Г. з. аналогичного устройства, к-рые в этом случае наз. реперами, или вделанными в стены каменных сооружений чугунными марками. На марках имеется отлитая вместе с ней надпись, указывающая вид и номер геодезического пункта.

Г. з. см. на рис. 3, 4, 5 в ст. Геодезия.

Лит.: Шишкин В. Н., Руководство по постройке геодезических знаков, 4 изд., М., 1965.

А. В. Буткевич.

ГЕОДЕЗИЧЕСКИЕ И КАРТОГРАФИЧЕСКИЕ ЖУРНАЛЫ, периодические научные издания, освещающие вопросы геодезии, картографии, фотограмметрии, космич. геодезии, внешнего гравитационного поля Земли и смежных областей науки.

Во всех странах (2-я пол. 20 в.) издаётся ок. 100 Г. и к. ж. Кроме того, в общих журналах, издаваемых академиями наук, научными ин-тами и ун-тами также печатаются статьи по геодезии, картографии, фотограмметрии и др. вопросам.

Наиболее известными и распространёнными журналами являются: Геодезия и картография(с 1956); Геодезия и аэрофотосъёмка (из серии Изв. высших учебных заведений, с 1957); Реферативный журнал. Астрономия и геодезия (с 1954); Bulletin geodesique (Р., с 1924); Photogrammetria (Amst., с 1938); Photogrammetric Engineering (Wash., с 1934); Surveying and Mapping (Wash., с 1941); Zeitschrift fur Vermessungswesen (Stuttg., с 1872); Allgemeine Vermessungsnachrichten (West-Berlin, с 1889); Vermessungstechnik (В., с 1953); Геодезия, картография, землеустройство (София, с 1961); Geodezia es kartografia (Bdpst, с 1949); Przeglqd geodezyjny (Warsz., с 1924); ;Geodeticky a kartograficky obzor (Praha, с 1955).

C. Г. Судаков.

Специализированные картографические журналы: Kartographische Nachrichten (Guhtersloh, с 1951); Cartography (Melbourne, с 1954); Bulletin du Coraite Fran-cais de Cartographic (P., с 1958); Internationales Jahrbuch fur Kartographie (Giitersloh, с 1961); Map (Tokyo, с 1963); The Cartographie Journal (L., с 1964); Bollettmo dell' Associazione Italiana di Cartografia(Firenze, с 1964); The Canadian Cartographer (Toronto, с 1964); Polski

Przeglad Kartograficzny (Warsz., с 1969). Среди справочно-библиографич. журналов наиболее важны: реферативный журнал География, выпуск Картография (с 1962); Bibliotheca Cartographica (Bad Godesberg, с 1957). К. А. Салищев.

ГЕОДЕЗИЧЕСКИЕ ИНСТРУМЕНТЫ, геодезические приборы, механические, оптико-механические, электрооптические и радиоэлектронные устройства для измерения длин линий, углов, превышений при построении астрономо-геодезической сети и нивелирной сети, съёмке планов, строительстве, монтаже и в процессе эксплуатации больших инженерных сооружений, антенных устройств радиотелескопов и т. п. К Г. и. относятся также инструменты для астро-номич. определений при геодезич. работах и маркшейдерские инструменты.

Инструменты и приборы для измерения длин линий. Для обычных измерений длин линий применяют стальные мерные ленты (рис. 1) длиной в 20 или 50 м, к-рые укладывают по земле, отмечая их концы шпильками. Относительная ошибка измерения лентой зависит от условий местности и в среднем составляет 1 : 2000. Для более точных измерений применяют ленты из инвара, к-рые натягивают динамометрами. Таким путём можно снизить ошибку до 1 : 20 000-1 : 50 000. Для ещё более точных измерений, гл. обр. базисов в триангуляции, применяют базисные приборы с подвесными инварными мерными проволоками длиной в 24 м, относительная ошибка таких измерений имеет порядок 1 : 1 000 000, т. е. 1 мм на 1 км длины измеряемой линии.

Рис. 1. Мерная лента.

В геодезич. работах применяют также дальномеры, совмещённые со зрительной трубой или являющиеся насадками на зрительную трубу Г. и. Они позволяют искомую длину линии определять из решения треугольника, вершина к-рого совпадает с передним главным фокусом объектива зрит, трубы инструмента, а его высотой служит измеряемая линия, причём основание и противолежащий ему угол в этом треугольнике известны.

Существуют также электрооптические дальномеры и радиодальномеры, позволяющие измерять расстояние по времени прохождения вдоль измеряемой линии световых волн или радиоволн, скорость распространения к-рых известна.

Инструменты для определения направлений и измерения углов. Для простейшего определения направле