БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

кроссинговера. Обмен участками хромосом (с находящимися в них генами) происходит с различной вероятностью, зависящей от расстояния между ними (чем дальше друг от друга гены, тем выше вероятность кроссинговера и, следовательно, рекомбинации). Генетич. анализ позволяет обнаружить перекрест только при различии гомологичных хромосом по составу генов, что при кроссинговере приводит к появлению новых генных комбинаций. Обычно расстояние между генами на Г. к. х. выражают как % кроссинговера (отношение числа мутантных особей, отличающихся от родителей иным сочетанием генов, к общему кол-ву изученных особей); единица этого расстояния - морганида - соответствует частоте кроссинговера в 1 % .

Г. к. х. составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют последовательно, номере их обнаружения. Кроме номера группы сцепления, указывают полные или сокращённые назв. мутантных генов, их расстояния в морганидах от одного из концов хромосомы, принятого за нулевую точку, а также место центромеры. Составить Г. к. х. можно только для объектов, у к-рых изучено большое число мутантных генов. Напр., у дрозофилы идентифицировано св. 500 генов, локализованных в её 4 группах сцепления, у кукурузы - ок. 400 генов, распределённых в 10 группах сцепления (рис. 1). У менее изученных объектов числэ обнаруженных групп сцепления меньше гаплоидного числа хромосом. Так, v домовой мыши выявлено ок. 200 генов, образующих 15 групп сцепления (на самом деле их 20); у кур изучено пока всего 8 из 39. У человека из ожидаемых 23 групп сцепления (23 пары хромосом) идентифицировано только 10, причём в каждой группе известно небольшое число генов; наиболее подробные карты составлены для половых хромосом.

У бактерий, к-рые являются гаплоидными организмами, имеется одна, чаще всего непрерывная, кольцевая хромосома и все гены образуют одну группу сцепления (рис. 2). При переносе генетич. материала из клетки-донора в клетку-реципиент, напр, при конъюгации, кольцевая хромосома разрывается и образующаяся линейная структура переносится из одной бактериальной клетки в другую (у кишечной палочки в течение 110- 120 мин). Искусственно прерывая процесс конъюгации, можно по возникшим типам рекомбииантов установить, какие гены успели перейти в клетку-реципиент. В этом состоит один из методов построения Г. к. х. бактерий, детально разработанных у ряда видов. Ещё более детализированы Г. к. х. нек-рых бактериофагов. См. также Генетика, Мутация.

Рис. 1. Генетические карты 7 -10-й хромосом кукурузы. Цифры по длине хромосом обозначают расстояние от конца хромосомы в морганидах; буквы - сокращённые названия признаков , определяемых соответствующими генами.

Рис. 2. Генетическая карта хромосомы тсишечной палочки (Eschenchia coli К 12). Цифры означают время (в мин), необходимое для переноса в клетку-реципиент генетических маркёров, контролирующих биосинтез ряда аминокислот, а также устойчивость к стрептомицину и к фагу Т6 эти цифры характеризуют расстояние между генами. Обозначения: ade - аденин; his - гистидин; try - триптофан; gal - галактоза; lac - лактоза; pro - пролин; leu - лейцин; tre - треонин; met - метионин; агд - аргинин; mt - маннит; xyl - ксилоза; mal - мальтоза; ser - серии; gly - глицин; sir иТ6, - устойчивость к стрептомицину или фагу Т6.

Лит,.: Лобашев М. Е., Генетика, 2 изд., Л., 1967; Медведев Н. Н., Практическая генетика, 2 изд., М., 1968; Актуальные вопросы современной генетики. Сб. ст., М., 1966; Жакоб Ф., Вольман Э., Пол и генетика бактерий, пер. с англ., М., 1962; Бензер С., Тонкая структура гена, в сб.: Молекулярная генетика, пер. с англ., М., 1963; Xэис У., Генетика бактерий и бактериофагов, пер. с англ., М., 1965; Рейвин А. У., Эволюция генетики, пер. с англ., М., 1967; Мюнтцинг А., Генетика, пер. с англ.,2 изд., М., 1967; Уотсон Д ж., Молекулярная биология гена, пер. с англ., М., 1967.

В. С. Андреев.

ГЕНЕТИЧЕСКИЕ РЯДЫ, группы органич. соединений с одинаковым числом атомов углерода в молекуле, различающихся функциональными группами; см. Гомологические ряды.

ГЕНЕТИЧЕСКИЙ АНАЛИЗ, совокупность методов изучения наследственных свойств организмов. Г. а. включает: 1) Гибридологический метод, изучающий законы наследственности, а также строение и поведение наследств, структур с помощью спец. видов скрещиваний (см. Гибридологический анализ). 2) Цитогенетический метод, развившийся на стыке генетики и цитологии. Главная его задача - установление связи между закономерностями наследования и строением и функциями хромосом (составление цитологических карт хромосом, геномный анализ и др.). 3) Молекулярно-генетический метод, получивший развитие в связи с новыми биохим. и физ.-хим. методами анализа наследственных структур. С его помощью изучается связь между молекулярным строением генов и синтезируемыми в соответствии с заложенной в них информацией белками.

Лит.: Серебровский А. С., Генетический анализ, М., 1970 (библ.).

Ю.С.Дёмин.

ГЕНЕТИЧЕСКИЙ КОД, система зашифровки наследственной информации в молекулах нуклеиновых кислот, реализующаяся у животных, растений, бактерий и вирусов в виде последовательности нуклеотидов. В природных нуклеиновых кислотах - дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК)-встречаются 5 распространённых типов нуклеотидов (по 4 в каждой нуклеиновой к-те), различающихся по входящему в их состав азотистому основанию (см. Пуриновые основания, Пиримидиновые основания). В ДНК встречаются основания: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т); в РНК вместо тимина присутствует урацил (У). Кроме них, в составе нуклеиновых к-т обнаружено ок. 20 редко встречающихся (т. н. неканонических, или минорных) оснований, а также необычных Сахаров. Т. к. кол-во кодирующих знаков Г. к. (4) и число разновидностей аминокислот в белке (20) не совпадают, кодовое число (т. е. кол-во нуклеотидов, кодирующих 1 аминокислоту) не может быть равно 1. Различных сочетаний по 2 нуклеотида возможно лишь 42 = 16, но этого также недостаточно для зашифровки всех аминокислот. Амер. учёный Г. Гамов предложил (1954) модель триплетного Г. к., т. е. такого, в к-ром 1 аминокислоту кодирует группа из трёх нуклеотидов, наз. кодоном. Число возможных триплетов равно 43 = 64, а это более чем втрое превышает число распространённых аминокислот, в связи с чем было высказано предположение, что каждой аминокислоте соответствует неск. кодонов (т. н. вырожденность кода). Было предложено много различных моделей Г. к., из к-рых серьёзного внимания заслуживали три модели (см. рис.): перекрывающийся код без запятых, неперекрывающийся код без запятых и код с запятыми. В 1961 Ф. Крик (Великобритания) с сотрудниками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Установлены след. осн. закономерности, касающиеся Г. к.:

Модели генетического кода: 1-й тип - перекрывающийся код без запятых; 2-й тип - неперекрывающийся код без запятых; 3-й тип - код с "промежутками", т. е. код с запятыми.

1) между последовательностью нуклеотидов и кодируемой последовательностью аминокислот существует линейное соответствие (колинеарность Г. к.); 2) считывание Г. к. начинается с определённой точки; 3) считывание идёт в одном направлении в пределах одного гена; 4) код является неперекрывающимся; 5) при считывании не бывает промежутков (код без запятых); 6) Г. к., как правило, является вырожденным, т. е. 1 аминокислоту кодируют 2 и более триплетов-синонимов (вырожденность Г. к. уменьшает вероятность того, что мутационная замена основания в триплете приведёт к ошибке); 7) кодовое число равно трём; 8) код в живой природе универсален (за нек-рыми исключениями). Универсальность Г. к. подтверждается экспериментами по синтезу белка in vitro. Если в бесклеточную систему, полученную из одного организма (напр., кишечной палочки), добавить нуклеиновокислотную матрицу, полученную из др. организма, далеко отстоящего от первого в эволюционном отношении (напр., проростков гороха), то в такой системе будет идти белковый синтез. Благодаря работам амер. генетиков М. Ниренберга, С. Очоа, X. Корана известен не только состав, но и порядок нуклеотидов во всех ко донах (см. табл., построенную по данным опытов с кишечной палочкой).

Из 64 кодонов у бактерий и фагов 3 ко-дона - УАА, УАГ и УГА - не кодируют аминокислот; они служат сигналом к освобождению полипептидной цепи с рибосомы, т. е. сигнализируют о завершении синтеза полипептида. Их наз. терминирующими кодонами. Существуют также 3 сигнала о начале синтеза - это т. н. инициирующие кодоны - АУГ, ГУГ и УУГ,- к-рые, будучи включёнными в начале соответствующей информационной РНК (и-РНК), определяют включение формилметионина в первое положение синтезируемой полипептидной цепи. Приведённые данные справедливы для бактериальных систем; для высших организмов многое ещё не ясно. Так, кодон УГА у высших организмов может быть значащим; не совсем понятен также механизм инициации полипептида.

Реализация Г. к. в клетке происходит в два этапа. Первый из них протекает в ядре; он носит назв. транскрипции и заключается в синтезе молекул и-РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК "переписывается" в нуклеотидную последовательность РНК. Второй этап - трансляция - протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и-РНК переводится в последовательность аминокислот в белке; этот этап протекает при участии транспортной РНК (т-РНК) и соответствующих ферментов (см. Белки, раздел Биосинтез).
В начале цепи и-РНК данный кодон определяет начало синтеза полипептидной цепи и кодирует аминокислоту формилметионин. От готовых полиплоидных цепей формильная группа или вся аминокислота может быть отщеплена с помощью соответствующих ферментов.

Лит.: Общая природа генетического кода для белков, в сб.: Молекулярная генетика, пер. с англ., М. 1963; Крик Ф., Генетический код (I), в кн.: Структура и функция клетки, пер. с англ., М., 1964, с. 9 - 23; Н и-ренберг М., Генетический код (II), там же, с. 24 - 41; Xэй с У., Генетика бактерий и бактериофагов, пер. с англ., М., 1965; Хартман Ф.,Саскайнд З., Действие гена, пер.сангл., М., 1966; Бреслер С.Е., Введение в молекулярную биологию, 2 изд., М. - Л., 1966; Ингрэм В., Биосинтез макромолекул, пер. с англ., М., 1966; Лобашев М. Е., Генетика, 2 изд., Л., 1967; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Сойфер В. Н., Молекулярные механизмы мутагенеза, М., 1969; Дубинин Н. П., Общая генетика, М., 1970. Н.П.Дубинин, В.Н.Сойфер.

ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ,сосуществование в пределах популяции двух или нескольких различных наследственных форм, находящихся в динамич. равновесии в течение неск. и даже мн. поколений. Чаще всего Г. п. обусловливается либо варьирующими давлениями и векторами (направленностью) отбора в различных условиях (напр., в разные сезоны), либо повышенной относит, жизнеспособностью гетерозшот. Один из видов Г. п.- сбалансированный Г. п. - характеризуется постоянным оптимальным соотношением полиморфных форм, отклонение от к-рого оказывается неблагоприятным для вида, и автоматически регулируется (устанавливается оптимальное соотношение форм). В состоянии сбалансированного Г. п. у человека и животных находится большинство генов. Различают неск. форм Г. п., анализ к-рых позволяет определять действие отбора в природных популяциях.

Лит.: Тимофеев-Ресовский Н. В., Свирежев Ю. М., О генетическом полиморфизме в популяциях, Генетика, 1967, № 10.

ГЕНЕТИЧЕСКОЕ ДЕЙСТВИЕ ИЗЛУЧЕНИЙ, радиационный мутагенез, возникновение наследственных изменений (мутаций) при облучении организмов. Г. д. и.- важная часть биологического действия ионизирующих излучений, исследуемая радиационной генетикой. Первые стабильные радиорасы у дрожжей получены сов. биологами Г. А. Надсоном и Г. С. Филипповым (1925); данные о повышении частоты мутаций у дрозофилы при рентгеновском облучении опубликованы амер. генетиком Г. Меллером (1927). Мутагенный эффект вызывают все типы ионизирующих излучений, а также ультрафиолетовые лучи, если их действию подвергаются наследственные структуры любых организмов - от вирусов и бактерий до высокоорганизованных животных, включая человека; при этом у сложных организмов мутации могут возникать как в половых клетках - гаметах, так и в клетках тела - соматических. Облучение может вызывать все типы мутаций (генные, хромосомные, геномные и цито-плазматические). В определ. интервале доз частота мутаций возрастает пропорционально дозе облучения; при увеличении дозы выше нек-рого значения линейность кривых, описывающих зависимость частоты мутаций от дозы, нарушается. Вновь возникающие мутации являются обычно рецессивными (см. Рецессивность) и вредными. Повышение радиоактивного фона ведёт к накоплению в популяциях организмов, в т. ч. и человека, скрытых вредных мутаций. Важное практич. применение Г. д. и.- радиационная селекция, т. е. отбор хоз.-ценных мутаций, получаемых гл. обр. у культурных растений и пром. микроорганизмов в результате их облучения. Выведенные таким способом новые сорта овса, ячменя, гороха, арахиса, плодовых и декоративных культур и др. уже занимают большие посевные площади. Мн. высокопродуктивные пром. штаммы микроорганизмов - продуцентов антибиотиков, витаминов, аминокислот-также получены путём радиационного мутагенеза.

Лит.: Итоги науки. Биологические науки, т. 3-Ионизирующие излучения и наследственность, М., 1960; Астауров Б. Л., Функциональный принцип в оценке относительной значимости радиационных поражений ядра н цитоплазмы, в сб.: Первичные механизмы биологического действия ионизирующих излучений, М., 1963; Ли Д. Э., Действие радиации на живые клетки, пер. с англ., М., 1963; Алнханян С. И., Селекция промышленных микроорганизмов, М., 1968; Тимофеев-Ресовский Н. В., Иванов В. И., Корогодин В. И., Применение принципа попаданий в радиобиологии, М., 1968.

Н. В. Тимофеев-Ресовский, В. И. Иванов.

ГЕНЕТТА (Genetta), род хищных млекопитающих сем. виверровых. Длинное (до 55 см), приземистое и необычайно гибкое тело покрыто короткой, довольно грубой шерстью; окраска пятнистая; хвост не пушистый, до 50 см', у его основания расположены железы, выделяющие резко пахнущую жидкость-мускус. 6 видов; распространены гл. обр. в саваннах и тропич. лесах Африки. Обыкновенная Г. (G. genetta) широко распространена по всей Африке, встречается и в Юго-Зап. Европе (Испания, Франция), где населяет лесистые и безлесные горы и низменности, обитая преим. около водоёмов. По повадкам Г. напоминает хорьков. Питается мелкими зверьками, птицами и их яйцами, а также беспозвоночными. Иногда вредит птицеводству. Ведёт преим. ночной образ жизни. Г. легко приручаются; в Африке их иногда содержат дома для истребления крыс и мышей.

Лит.: Mammals of the world, v. 2, Bait., 1964.

ГЕНЗЕЛЬТ Адольф Львович (12.5.1814, Швабах, Бавария,-10.10.1889, Вармбрунн, Силезия), русский пианист, педагог и композитор. Род. в нем. семье. В 1836 начал концертную деятельность в Берлине. С 1838 жил в Петербурге, занимаясь преим. преподаванием игры на фортепьяно (среди его учеников - В. В. Стасов, И. Ф. Нейлисов, Н. С. Зверев). В 1872-75 редактор муз. журнала Нувеллист; в 1887-88 профессор Петерб. консерватории. Игра Г. отличалась тонкой художеств. выразительностью, тщательной отделкой деталей и замечательным технич. мастерством. Фортепьянные произв. Г. (св. 40 опусов) мелодичны, изящны (особенно выделяются этюды, блестяще разработанные в пианистич. отношении), но подчас носят налёт салонной виртуозности. Г. принадлежит множество редакций, переложений и обработок для фортепьяно (в т. ч. обработки рус. нар. песен и произв. рус. композиторов). Автор инструктивно-педагогич. сочинения На многолетнем опыте основанные правила преподавания фортепианной игры (1868).

Лит.: Ф. [Финдеизен Н.], Адольф Гензельт, Русская музыкальная газета, 1899, № 37; Алексеев А., Русские пианисты. Очерки и материалы по истории пианизма, в. 2, М.- Л., 1948; Музалевский В., Русская фортепианная музыка. Очерки и материалы по истории русской фортепианной культуры, Л.- М., 1949.

ГЕНИАЛЬНОСТЬ, наивысшая степень проявления творческих сил человека. Термин Г. употребляется как для обозначения способности человека к творчеству, так и для оценки результатов его деятельности. Предполагая врождённую способность к продуктивной деятельности в той или иной области, гений, в отличие от таланта, представляет собой не просто высшую степень одарённости, а связан с созданием качественно новых творений, открытием ранее неизведанных путей творчества. Деятельность гения реализуется в определённом историч. контексте жизни человеческого общества, из к-рой гений черпает материал для своего творчества.

В психологии творчества Г. изучается под углом зрения индивидуальных особенностей личности (её психич. склада, способностей и т. д.), а также разнообразных факторов, влияющих на творчество. С психологич. точки зрения гений не может рассматриваться как особый тип личности. Разнообразные попытки выделить к.-л. общие психологич. или психопатологич. черты Г. оказались неудовлетворительными: гениальные люди обнаруживают значительные индивидуальные различия с точки зрения одарённости, характера, культуры, интересов, навыков и т. д. Сам творческий процесс гения также принципиально не отличается с психологич. точки зрения от творческого процесса других одарённых людей. В ряде концепций Г., особенно начиная с Ч. Ломброзо, постулировалась связь между Г. и психич. расстройством, что, однако, не находит всеобщего подтверждения: дисгармония душевной жизни или предрасположенность к ней, свойственная многим гениальным людям, не является неизменным спутником Г.

Историч. воззрения на природу Г. и её оценка связаны с общим пониманием творческого процесса (см. Творчество). Так, от античности идёт взгляд на Г. как род иррационального вдохновения, божественного наития (Платон, неоплатонизм). Начиная с эпохи Возрождения (Леонардо да Винчи, Дж. Вазари, Скалигер) получает распространение культ гения как творч. индивидуальности, достигающий своего апогея в период романтизма (предромантич. течение Бури и натиска в Германии, романтизм и вышедшие из него учения Т. Кар-лейля, Ф. Ницше с характерным для них противопоставлением гения и массы). В 18 в. складывается понятие гения в совр. смысле этого слова, к-рое у А. Шефтсбер