БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

.

Г. Ф. Самойлович.

ГЕЛЕРТЕРСТВО (от нем. Gelehrter - учёный), книжная, оторванная от жизни и практич. деятельности учёность; начётничество.

ГЕЛЕФФ (Geleff) Поуль (6.1.1842, Бредебро,- 16.5.1928, о. Капри), датский политич. деятель, один из первых пропагандистов идей науч. социализма в Дании. В 1871-77 сотрудничал (с перерывами) в газ. "Сосиалистен" [(Socialisten), с мая 1874стала наз.Сосиаль-демократен (Social Demokraten)]. В окт. 1871 был одним из инициаторов создания в Копенгагене дат. секции 1-го Интернационала и её многих филиалов в провинции. В 1872- 1875 находился в тюрьме за революц. деятельность. В марте 1877 эмигрировал в США. В 1920 вернулся в Данию.

А. С. Каплин.

ГЕЛИ (от лат. gelo - застываю), дисперсные системы с жидкой или газообразной дисперсионной средой, обладающие нек-рыми свойствами твёрдых тел: способностью сохранять форму, прочностью, упругостью, пластичностью. Эти свойства Г. обусловлены существованием у них структурной сетки (каркаса), образованной частицами дисперсной фазы, к-рые связаны между собой молекулярными силами различной природы (подробнее см. Дисперсная структура).

Типичные Г. в виде студенистых осадков (коагелей) образуются из золей при их коагуляции или в процессах выделения новой фазы из пересыщенных растворов как низко-, так и высокомолекулярных веществ. Г. с водной дисперсионной средой наз. гидрогелями, с жидкой углеводородной средой -органогелями. Отверждение золей во всём объёме без выделения осадка и нарушения их однородности даёт т.н. лиогели. Вся дисперсионная среда в таких Г. лишена подвижности (иммобилизована) вследствие механич. захватывания в ячейках структурной сетки. Чем больше асимметрия частиц, тем при более низком содержании дисперсной фазы образуется гель. В случае гидрозоля пятиокиси ванадия, напр., для отверждения системы достаточно 0,05%, в др. случаях - нескольких объёмных процентов дисперсной фазы. Лиогели обладают малой прочностью, пластичностью, нек-рой эластичностью и тиксотропиеи, т. е. способностью обратимо восстанавливать структуру, разрушенную механич. воздействием. Таковы, напр., Г. мыл и мылоподобных поверхностно-активных веществ, Г. гидроокисей мн. поливалентных металлов. Высушиванием лиогелей можно получить аэрогели, или ксерогели,- микропористые системы, лишённые пластичности, имеющие хрупкую, необратимо разрушаемую структуру. Так получают распространённые сорбенты: алюмогель из Г. гидроокиси алюминия и силикагель из студней кремнёвой к-ты. Г. часто отождествляют со студнями. Однако последние, в отличие от Г., являются однофазными (гомогенными) системами - истинными растворами полимеров (органических или неорганических) в низкомолекулярных жидкостях. В химии и технологии синтетич. смол Г. по традиции наз. неплавкие и нерастворимые твёрдые (хрупкие) или твёрдо-образные (упруго-вязкопластичные) продукты поликонденсации или полимеризации. Пространственную структуру в таких системах образует непрерывная сетка химически связанных макромолекул.

ГЕЛИ ПРИРОДНЫЕ МИНЕРАЛЬНЫЕ, аморфные минералы, образовавшиеся в водной среде и содержащие воду в переменных количествах. Их часто наз. коллоидными минералами. Свежеобразованные Г. п. м. очень богаты водой и напоминают студенистые или хлопьевидные массы. С течением времени они теряют воду и затвердевают. В природных условиях в форме гелей встречаются кремнезём, водные окиси железа и марганца, односернистое железо и др. Из твёрдых минеральных гелей наиболее распространён опал (SiO2*nH2O), встречающийся гл. обр. в жилах и минеральных отложениях горячих и тёплых источников. К числу типичных твёрдых гелей, образующихся при выветривании, относятся аллофан (mАl2О3*nSiO2*рН2О) и дельвоксит (водный фосфат окисного железа), а также лимониты, вады.

Из продуктов кристаллизации природных гелей образуются так называемые метаколлоиды - халцедон (SiO2), хризо-колла (CuSiO3*nH2O), гидрогётит (FeOOH*nH2O), нек-рые разновидности гидраргиллита и др. Многие агрегаты твёрдых Г. п. м. характеризуются округлостью внешних контуров (т. н. колломорфные структуры). Г. п. м. наиболее устойчивы в поверхностных участках земной коры.

Лит.: Чухров Ф.В., Коллоиды в земной коре, М.- Л., 1936; Седлецкий И. Д., Коллоидно-дисперсная минералогия, М.- Л., 1945.

ГЕЛИАКИЧЕСКИЙ ВОСХОД ЗВЕЗДЫ, гелический восход звезд ы (от греч. heliakos - солнечный), день или, точнее, момент первого в году появления звезды над горизонтом на вост. стороне неба на фоне утренней зари. (До гелиакич. восхода звезда в течение неск. месяцев находится на дневном небе и невидима.) Момент Г. в. з. зависит от координат звезды и географических координат места наблюдения. Моменты Г. в. з. (Сириуса) позволяли астрономам Др. Египта предсказывать сроки весенних разливов Нила, имевших значение для распорядка сельскохозяйственных работ.

ГЕЛИБОЛУ (тур. Gelibolu), Галлиполи (Gallipoli), древний Каллиполис (Kallipolis), город и порт на европ. берегу Дарданелльского пролива.

Важная крепость и крупный торг, центр Византии. В марте 1354 был захвачен турками-османами и стал опорной базой их дальнейших завоеваний на Балканах. В сер. 19 в. здесь были построены новые воен. укрепления, усиленные в 70-х гг. Во время 1-й мировой войны на п-ове Г. (Галлипольский п-ов) происходили активные воен. действия (см. Дарда-нелльская операция 1915).

ГЕЛИДИУМ (Gelidium), род красных водорослей; включает ок. 40 видов, обитающих в тёплых морях. Слоевище жёсткое, хрящеватое, часто перисто-разветвлённое, высотой 1-25 см. Спорофит и гаметофит сходны по строению. Спорофит даёт тетраспоры. Гаметофит в результате полового процесса образует карпоспоры. Г. используют для получения агар-агара, особенно в Японии. В СССР встречается в Японском и Чёрном морях в незначит. количествах.

ГЕЛИЙ (лат. Helium), символ Не, хим. элемент VIII группы периодич. системы, относится к инертным газам; п. н. 2, ат. масса 4,0026; газ без цвета и запаха. Природный Г. состоит из 2 стабильных изотопов: 3Не и 4Не (содержание 4Не резко преобладает).

Впервые Г. был открыт не на Земле, где его мало, а в атмосфере Солнца. В 1868 француз Ж. Жансен и англичанин Дж. Н. Локьер исследовали спектроскопически состав солнечных протуберанцев. Полученные ими снимки содержали яркую жёлтую линию (т. н. D3-линию), к-рую нельзя было приписать ни одному из известных в то время элементов. В 1871 Локьер объяснил её происхождение присутствием на Солнце нового элемента, к-рый и назвали гелием (от греч. helios - Солнце). На Земле Г. впервые был выделен в 1895 англичанином У. Рамзаем из радиоактивного минерала клевеита. В спектре газа, выделенного при нагревании клевеита, оказалась та же линия.

Гелий в природе. На Земле Г. мало: 1 м3 воздуха содержит всего 5,24см3 Г., а каждый килограмм земного материала - 0,003 мг Г. По распространённости же во Вселенной Г. занимает 2-е место после водорода: на долю Г. приходится ок. 23% космич. массы.

На Земле Г. (точнее, изотоп 4Не) постоянно образуется при распаде урана, тория и других радиоактивных элементов (всего в земной коре содержится ок. 29 радиоактивных изотопов, продуцирующих 4Не).

Примерно половина всего Г. сосредоточена в земной коре, гл. обр. в её гранитной оболочке, аккумулировавшей осн. запасы радиоактивных элементов. Содержание Г. в земной коре невелико - 3*10-7% по массе. Г. накапливается в свободных газовых скоплениях недр и в нефтях; такие месторождения достигают пром. масштабов. Макс, концентрации Г. (10-13% ) выявлены в свободных газовых скоплениях и газах урановых рудников и (20-25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше Г. в составе природных газов. Вулканич. газам свойственно обычно низкое содержание Г.

Добыча Г. в пром. масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5 % по объёму); рядо-вые (0,10-0,50) и бедные (<0,10). В СССР природный Г. содержится во многих нефтегазовых месторождениях. Значительные его концентрации известны в нек-рых месторождениях природного газа Канады, США (шт. Канзас, Техас, Нью-Мексико, Юта).

В природном Г. любого происхождения (атмосферном, из природных газов, из радиоактивных минералов, метеоритном и т. д.) преобладает изотоп 4Не. Содержание 3Не обычно мало (в зависимости от источника Г. оно колеблется от 1,3*10-4 до 2*10-8%) и только в Г., выделенном из метеоритов, достигает 17-31,5%. Скорость образования 4Не при радиоактивном распаде невелика: в 1 т гранита, содержащего, напр., 3 г урана и 15 г тория, образуется 1 мг Г. за 7,9 млн. лет; однако, поскольку этот процесс протекает постоянно, за время существования Земли он должен был бы обеспечить содержание Г. в атмосфере, литосфере и гидросфере, значительно превышающее наличное (оно составляет ок. 5*1014 м3 ). Такой дефицит Г. объясняется постоянным улетучиванием его из атмосферы. Лёгкие атомы Г., попадая в верхние слои атмосферы, постепенно приобретают там скорость выше 2-й космической и тем самым получают возможность преодолеть силы земного притяжения. Одновременное образование и улетучивание Г. приводят к тому, что концентрация его в атмосфере практически постоянна.

Изотоп 3Не, в частности, образуется в атмосфере при бета-распаде тяжёлого изотопа водорода - трития (Т), возникающего, в свою очередь, при взаимодействии нейтронов космич. излучения с азотом воздуха:

Ядра атома 4Не (состоящие из 2 протонов и 2 нейтронов), наз. альфа-частицами или гелионами,-самые устойчивые среди составных ядер. Энергия связи нуклонов (протонов и нейтронов) в 4Не имеет максимальное по сравнению с ядрами других элементов значение (28,2937 Мэв); поэтому образование ядер 4Не из ядер водорода (протонов) 1Н сопровождается выделением огромного количества энергии. Считают, что эта ядерная реакция:

[одновременно с 4Не образуются 2 позитрона и 2 нейтрино (v)] служит основным источником энергии Солнца и других схожих с ним звёзд. Благодаря этому процессу и накапливаются весьма значит, запасы Г. во Вселенной.

Физич. и химич. свойства. При нормальных условиях Г.- одноатомный газ без цвета и запаха. Плотность 0,17846 г/л, tкип -268,93°С. Г.- единственный элемент, к-рый в жидком состоянии не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. Наименьшее давление перехода жидкого Г. в твёрдый 2,5 Мн/м2 (25 ат), ?„л при этом равна -272,1°С. Теплопроводность (при 0°С) 143,8*10-3вт/см-К [343,4 • 10-6 кал/(см•град•сек)]. Радиус атома Г., определённый различными методами, составляет от 0,85 до 1,33 А. В 1 л воды при 20°С растворяется ок. 8,8 мл Г. Энергия первичной ионизации Г. больше, чем у лю бого другого элемента,- 39,38*10-13дж (24,58 эв); сродством к электрону Г. не обладает. Жидкий Г., состоящий только из 4Не, проявляет ряд уникальных свойств (см. ниже).

До наст, времени попытки получить устойчивые хим. соединения Г. оканчивались неудачами (см. Инертные газы). Спектроскопически доказано существование в разряде иона Не2+. В 1967 советские исследователи В. П. Бочин, Н. В. За-курин, В. К. Капышев сообщили о синтезе в зоне дугового разряда за счёт реакции Г. с фтором, с ВFa или с RuF5 ионов HeF+, HeF22+ и HeF2+. Согласно расчёту, величина энергии диссоциации иона HeF+ равна 2,2 эв.

Получение и применение. В пром-сти Г. получают из гелийсодержа-щих природных газов (в наст, время эксплуатируются гл. обр. месторождения, содержащие > 0,1% Г.). От других газов Г. отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов.

Благодаря инертности Г. широко применяют для создания защитной атмосферы при плавке, резке и сварке активных металлов. Г. менее электропроводен, чем другой инертный газ - аргон, и поэтому электрич. дуга в атмосфере Г. даёт более высокие темп-ры, что значительно повышает скорость дуговой сварки. Благодаря небольшой плотности в сочетании с негорючестью Г. применяют для наполнения стратостатов. Высокая теплопроводность Г., его хим. инертность и крайне малая способность вступать в ядерную реакцию с нейтронами позволяют использовать Г. для охлаждения атомных реакторов. Жидкий Г.- самая холодная жидкость на Земле, служит хладагентом при проведении различных научных исследований. На определении содержания Г. в радиоактивных минералах основан один из методов определения их абсолютного возраста (см. Геохронология). Благодаря тому что Г. очень плохо растворим в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам (замена азота на Г. предотвращает появление кессонной болезни). Изучаются возможности применения Г. и в атмосфере кабины космич. корабля.

С. С. Бердоносов, В. П. Якуцени.

Гелий жидкий. Относительно слабое взаимодействие атомов Г. приводит к тому, что он остаётся газообразным до более низких темп-р, чем любой другой газ. Максимальная темп-pa, ниже к-рой он может быть сжижен (его критич. темп-pa Тк), равна 5,20 К. Жидкий Г.- единственная незамерзающая жидкость: при норм, давлении (рис. 1) Г. остаётся жидким при сколь угодно низких темп-рах

и затвердевает лишь при давлениях, превышающих 2,5 Мн/м2 (25 ат).

Рис. 1. Диаграмма состояния 4Не.

При темп-ре и норм, давлении жидкий Г. испытывает фазовый переход второго рода. Г. выше этой темп-ры наз. Не I, ниже - Не II. При темп-ре фазового перехода наблюдаются аномальное возрастание теплоемкости (т. н.-точка, рис. 2), излом кривой темп-рной зависимости плотности Г. (рис. 3) и др. характерные Явления. В 1938 П. Л. Капица открыл у Не II сверхтекучесть - способность течь практически без вязкости. Объяснение этого явления было дано Л. Д. Ландау (1941) на основе квантовомеханич. представлений о характере теплового движения в жидком Г.

Рис. 2. Теплоёмкость жидкого 4Не вблизи лямбда-точки Кривая имеет характерную форму, напоминающую греч. букву лямбда.

Рис. 3. Плотность Р жидкого 4Не вблизи -точки.

При низких темп-pax это движение описывается как существование в жидком Г. элементарных возбуждений - фононов (квантов звука), обладающих энергией ( - частота звука, h - постоянная Планка) и импульсом р = = (с = 240 м/сек - скорость звука). Число и энергия фононов растут с повышением темп-ры Т. При Т>0,6 К появляются возбуждения с большими энергиями (ротоны), ддя к-рых зависимость е(р) имеет нелинейный характер. Фононы и ротоны (см. Квазичастицы) обладают импульсом и, следовательно, массой. Отнесенная к 1 см3, эта масса определяет плотность т. н. нормальной компоненты жидкого Г. При низких темп-pax, стремится к нулю при . Движение нормальной компоненты, как и обычного газа,имеет вязкостный характер. Остальная часть жидкого Г., т. н. сверхтекучая компонента, движется без трения; её плотность При так что в-точке обращается в нуль и сверхтекучесть исчезает (Не I - обычная вязкая жидкость).

Т. о., в жидком Г. одновременно могут происходить два движения с различными скоростями. н а основе этих представлений удаётся объяснить ряд наблюдаемых эффектов: при вытекании Не II из сосуда через узкий капилляр темпра в сосуде повышается, т. к. вытекает гл. обр. сверхтекучая компонента, не несущая с собой теплоты (т. н. механокалорический эффект); при создании разности темп-р между концами закрытого капилляра с Не II в нём возникает движение (термомеханический эффект) - сверхтекучая компонента движется от холодного конца к горячему и там превращается в нормальную, к-рая движется навстречу, при этом суммарный поток отсутствует. В жидком Г. может распространяться звук двух видов - обычный и т. н. второй звук. При распространении второго звука в местах сгущения нормальной компоненты происходит разрежение сверхтекучей.

Все сказанное относится к обычному Г., состоящему в основном из изотопа 4Не. Более редкий изотоп 3Не имеет иные, чем у 4Не, квантовые свойства (см. Квантовая жидкость). Жидкий 3Не - также незамерзающая жидкость (Тк = = 3,33 К), но не обладающая сверхтекучестью: вязкость 3Не неограниченно возрастает с понижением темп - ры.

Л. П Питаевский.

Лит: Кеезом В , Гелий, пер. с англ., М., 1949, Фастовский В. Г., Ровинский А. Е, Петровский Ю. В., Инертные газы, М, 1964; Халатников И. М., Введение в теорию сверхтекучести, М , 1965; Смирнов Ю. Н., Гелий вблизи абсолютного нуля, "Природа", 1967, № 10, с 70, Якуцени В. П., Геология гелия, Л., 1968. См. также лит. к ст. Инертные газы.

ГЕЛИКОИД (от греч. helix, род. падеж helikos - спираль и eidos - вид), один из видов винтовой поверхности.

ГЕЛИКОН (от греч. helix, род. падеж helikos - кольцо, спираль), духовой инструмент семейства бюгелъгорнов, модификация басовой и контрабасовой тубы. Сконструирован в России в 40-х гг. 19 в. Употребляется гл. обр. в духовых оркестрах. Чтобы инструмент было удобно носить на плече, ствол изогнут в виде кольца.

ГЕЛИКОНИДЫ (Heliconinae), подсемейство дневных бабочек сем. нимфалид (Nymphalidae). Ок. 200 видов; распространены в тропич. Америке. Г.- сравнительно крупные (крылья в размахе иногда более 6 см) узкокрылые бабочки, имеющие яркую окраску (красочный рисунок на общем чёрном фоне); тело гусениц покрыто ветвистыми шипами. Скверный запах и острый вкус выделяемых Г. веществ делают их несъедобными и тем самым защищают от птиц и др. врагов. Яркая окраска Г.- один из классич. примеров т. н. предупреждающей окраски. Морфологич. сходство принадлежащих к другим сем. бабочек (не выделяющих едких веществ) с Г. дало основание говорить об их приспособительном подражании (см. Мимикрия).

ГЕЛИКОПРИОН (от греч. helix, род. падеж helikos - спираль и рrion - пила) (Helicoprion), род ископаемых животных класса акулообразных рыб. Описаны рус. учёным А. П. Карпинским. Были распространены в морях ранней перми на территории Приуралья, Японии, Австралии, Шпицбергена и США. Средний (симфизный) ряд зубов нижней челюсти сливался в спираль из 2-3 оборотов (отсюда назв.), выдвигался изо рта вперёд и загибался снаружи в особую хрящевую полость. Спирали противопоставлялись мелкие дробящие зубы верхней челюсти. Лит.: Обручев Д. В., Изучение едестид и работы А. П. Карпинского, Тр. Палеонтологического