БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

rula galbaniflua, растущей по сухим степным склонам в горах Туркмении и Ирана. Г. добывают подсочкой стеблей и из естеств. наплывов, образующихся на местах, пораненных насекомыми. Г. имеет жёлто-бурую окраску, морковный запах, горький вяжущий вкус; содержит 24-66% смолы, 11 -19% камеди и 6-10% эфирных масел.

ГАЛЬБЕРГ Самуил (Фридрих) Иванович [2(13).12.1787, мыза Каттентак, Эстония, -10(22 ).5.1839, Петербург], русский скульптор. Учился в петерб. АХ (1795-1808) у И. П. Мартоса. Пенсионер АХ в Риме (1818-28), где пользовался советами Б. Торвальдсена. Преподавал в петерб. АХ (с 1829, с 1836 -проф.). Представитель классицизма. В ранний период выступил с идиллич. произв. ("Фавн, прислушивающийся к звуку ветра", гипс, 1825; мрамор, 1830, Рус. музей, Ленинград). В своих скульптурных портретах Г. стремился точно передать черты лица и его наиболее характерное выражение, используя в то же время обобщённые формы античных бюстов (портреты В. А. Глинки, гипс, 18.9, Рус. музей, и А. С. Пушкина, бронза, 1837, Всесоюзный музей А. С. Пушкина, г. Пушкин). Г.- автор эскизов и пооектов памятников Г. Р. Державину в Казани (1833, открыт в 1847, не сохранился), Н. М. Карамзину в Симбирске (ныне Ульяновск; 1836, открыт в 1845).

Лит.: Скульптор Самуил Иванович Галь-берг в его заграничных письмах и записках 1818 - 1828. Собрал В. Ф. Эвальд, СПБ, 1884; Мроз Е., С. И. Гальберг, М.- Л., 1948.

ГАЛЬВАКС, Хальвакс (Halhvachs) Вильгельм (9.7.1859, Дармштадт,-20.6. 1922, Дрезден), немецкий физик. Окончил Страсбургский ун-т в 1883. Профессор (с 1893) Высшего технич. уч-ща в Дрездене. Исследования в области фотоэлектрич. эффекта. Впервые показал, что металлы под действием ультрафиолетового излучения теряют отрицат. заряд.

Соч.: Ober den EinfluB_des Lichtes auf elektrostatisch geladene Korper, "Annalen der Physik und Chemie". 1888, Bd 33; Lichtelek-trische Ermudung, "Anna.en der Physik", 1907. Bd 23.

ГАЛЬВAH (Galvan) Мануэль де Хесус (1834, Санто-Доминго, -1910, там же), доминиканский писатель. Автор ист. романа "Энрикильо" (1882, рус. пер. 1963) о борьбе вождя одного из индейских племён о. Гаити за свободу и независимость. Основанный на тщательном изучении историч. источников, проникнутый духом романтизма, роман живо воссоздаёт картины эпохи.

Лит.: Стюарт Р., "Энрикильо" - книга о борьбе за свободу, "Курьер ЮНЕСКО", 1957, № 6; Ваlaguеr J., Literatura dominicana, В. Aires, [1950]; Melendez C., La novela indianista en Hispanoamerica, [2-a ed.], Rio Piedras, 1961. 3. И. Плавскин.

ГАЛЬВАНИ (Galvani) Луиджи (Алоизий) (9.9.1737, Болонья,-4.12.1798, там же), итальянский анатом и физиолог, один из основателей учения об электричестве, основоположник электрофизиологии. Образование получил в Болонском ун-те, там же преподавал медицину. Первые работы Г. посвящены сравнит, анатомии. В 1771 начал опыты по животному электричеству; исследовал способность мышц препарированной лягушки сокращаться под влиянием электрич. тока; наблюдал сокращение мышц при соединении их металлом с нервами или спинным мозгом, обратил внимание на то, что мышца сокращается при одноврем. прикосновении к ней двух разных металлов. Эти опыты были правильно объяснены А. Вольта и способствовали изобретению нового источника тока - гальванического элемента. В 1791 Г. опубликовал "Трактат о силах электричества при мышечном движении". Новыми опытами (опубл. в 1797) Г. доказал, что мышца лягушки сокращается и без прикосновения к ней металла - в результате непосредственного её соединения с нервом. Исследования Г. имели значение для мед. практики и разработки методов физиол. эксперимента.

Лит.: Лебединский А. В., Роль Гальвани и Вольта в истории физиологии, в кн.: Гальвани А. и Вольта А., Избр. работы о животном электричестве, М.- Л., 1937. Н.А.Григорян.

ГАЛЬВАНИЗАЦИЯ (по имени Л. Гальвани), метод леч. воздействия постоянным током небольшой силы и напряжения. Первые попытки применения такого тока для лечения относятся к нач. 19 в.; систематич. изучение физиологич. и леч. действия началось во 2-й пол. его. Постоянный ток силой до 30 ма и напряжением до 100 в вызывает в тканях перераспределение, т. е. изменение концентрации, ионов, что сопровождается сложными фи-зико-химич. процессами, ведущими к изменению проницаемости клеточных мембран, деятельности ферментов и уровня обменных процессов. В зависимости от методики воздействия и дозировки Г. повышает или снижает функции тканей, оказывает болеутоляющий эффект, улучшает периферич. кровообращение, восстанавливает поражённые ткани, в т. ч. и нервы. Ток, раздражая множество нервных окончаний, вызывает не только местную, но и более или менее выраженную общую реакцию, стимулирует регуляторную функцию нервной системы. Ток для Г. получают от спец. аппаратов (раньше ток получали от гальванич. элементов, аккумуляторов). Ток от аппарата подводится по проводам к больному чаще через пластинчатые электроды. Между металлич. пластинкой и телом для предупреждения ожогов продуктами электролиза помещают гидрофильную прокладку (фланель или спец. пластмассу), смоченную водой. Промежуточной средой между металлич. электродом и кожей может быть также вода, налитая в ванночки. После фиксации электродов включают ток, а затем его постепенно увеличивают до необходимого значения. Интенсивность воздействия дозируют по плотности тока (количество ма/см2 прокладки) и продолжительности процедуры. Процедуру проводят при плотности тока от 0,01 до 0,1 ла/см2 в зависимости от цели воздействия, размеров электродов, возраста, состояния и ощущения больного, к-рый во время процедуры не должен испытывать боли или жжения. По окончании процедуры так же плавно уменьшают ток до полного его выключения. Показания к применению Г.: заболевания и поражения различных отделов периферич. нервной системы инфекционного, токсич. и трав-матич. происхождения (радикулиты, плекситы, невриты, невралгии различной локализации), последствия заболеваний и поражений головного и спинного мозга, мозговых оболочек, невротич. состояния, вегетативно-сосудистые нарушения, хро-нич. воспаления суставов (артриты) трав-матич., ревматич. и обменного происхождения и др.

Лит.: Аникин М. М. и Варшаве р Г. С., Основы физиотерапии, 2 изд., М., 1950; Ливенцев Н. М., Электромедицинская аппаратура, 3 изд., М., 1964, В.Г. Ясногородский.

ГАЛЬВАНИЧЕСКАЯ ВАННА, аппарат для нанесения на поверхность изделия гальванич. покрытий, а также для изготовления изделий гальванопластич. способом. См. Гальванотехника.

ГАЛЬВАНИЧЕСКИЕ ПОКРЫТИЯ, металлич. плёнки толщиной от долей мкм до десятых долей мм, к-рые наносят методом электролитич. осаждения на поверхность металлич. изделий с целью защиты их от коррозии и механич. износа, а также сообщения поверхности специальных физич. и химич. свойств. См. Гальванотехника.

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ, устройства, позволяющие получать электрич. ток за счёт хим. реакции. См. Химические источники тока.

ГАЛЬВАНО... (по имени Л. Гальвани), часть сложных слов, употребляющаяся вместо "гальванический", "гальванизм" (напр., гальванометр, гальванопластика).

ГАЛЬВАНОКАУСТИКА (от гальвано... и греч. kaustikos - жгучий), гальванотермия, термокаустика, электрокаустика, прижигание тканей тела особыми металлич. петлями разной формы, т. н. гальванокаутepами, накаливаемыми проводимым через них электрич. током. Г. применяют для разрушения и удаления небольших доброкачеств. опухолей, для разделения сращений и спаек, образующихся между тканями и органами в процессе болезни, для остановки кровотечения из мельчайших кровеносных сосудов - капилляров, выжигания татуировок и т. п. Источниками тока служат гальванич. или аккумуляторные батареи либо используется трансформированный до напряжения 2-4 в при силе 20 ма ток промышлен-но-осветит. сети. См. также Электрокоагуляция. В. Г. Ясногородский.

ГАЛЬВАНОМАГНИТНЫЕ ЯВЛЕНИЯ, совокупность явлений, связанных с действием магнитного поля на электрич. (гальванич.) свойства твёрдых проводников (металлов и полупроводников), по к-рым течёт ток. Наиболее существенны Г. я. в магнитном поле Н, перпендикулярном току (поперечные Г. я.). К ним относится эффект Холла - возникновение разности потенциалов (эдс Холла VH) в направлении, перпендикулярном полю Н и току j (j - плотность тока), и изменение электрич. сопротивления проводника в поперечном магнитном поле. Разность Др между сопротивлением р проводника в магнитном поле и без поля часто наз. магнетосопро-тивлением.

Мерой эффекта Холла служит постоянная Холла:[0605-3-9.jpg]

Здесь d - расстояние между электрич. контактами, с помощью к-рых измеряют эдс Холла. Постоянная Холла в широких пределах не зависит от величины магнитного поля (а для металлов и от темп-ры). Линейная зависимость Vн от магнитного поля Н используется для измерения магнитных полей (см. Магнитометр).

В электронных проводниках, в к-рых ток переносится "свободными" электронами (электронами проводимости), согласно простейшим представлениям, постоянная Холла выражается через число электронов проводимости п в см3: R = = 1/пес (е-заряд электрона, с-скорость света). Поэтому измерение R служит одним из осн. методов оценки концентрации электронов проводимости п в электронных проводниках. У электронных проводников R имеет знак минус. У полупроводников с дырочной проводимостью и у нек-рых металлов постоянная Холла имеет знак плюс, соответствующий положительно заряженным носителям тока - дыркам (см. Твёрдое тело). Т. к. эдс Холла меняет знак при изменении направления магнитного поля на обратное, то эффект Холла наз. нечётным Г. я.

Относительное изменение сопротивления в поперечном поле [0605-3-10.jpg]в обычных условиях (при комнатной темп-ре) очень мало: у хороших металлов[0605-3-11.jpg] ~ 10~4 при Н~104э. Важным исключением является висмут (Bi), у к-рого[0605-3-12.jpg]при Н = 3*104 э. Это позволяет его использовать для измерения магнитного поля. У noлупроводников изменение сопротивления несколько больше, чем у металлов: [0605-3-13.jpg]~10-2-10-1 и существенно зависит от концентрации примесей в полупроводнике и от темп-ры. Напр., у достаточно чистого германия [0605-3-14.jpg]при Т = 90 К и H=1,8-104э.

Понижение темп-ры и увеличение магнитного поля приводят к увеличению [0605-3-15.jpg]П. Л. Капица (1929), используя магнитные поля в неск. сот тысяч э и сравнительно низкие темп-ры (темп-pa жидкого азота), обнаружил существ, увеличение сопротивления большого числа металлов и показал, что в широком интервале магнитных полей [0605-3-16.jpg]линейно зависит от магнитного поля (закон Капицы).

В слабых магнитных полях[0605-3-17.jpg] пропорционально Н2. Коэфф. пропорциональности между[0605-3-18.jpg] и Н2 положителен, т. е. сопротивление растёт с увеличением магнитного поля. Изменение сопротивления в магнитном поле наз. чётным Г. я., т. к.[0605-3-19.jpg]не изменяет знак при изменении направления поля Н на обратное.

Так как сопротивление весьма чувствительно к качеству образца (к количеству примесей и дефектов кристаллич. решётки), а также к темп-ре, то каждое измерение приводит к новой зависимости[0605-3-20.jpg] от Н. Имеющиеся экспериментальные данные для металлов удобно описывать, выразив [0605-3-21.jpg]в виде функции от НЭФ = = Нрзоо/р, где[0605-3-22.jpg]-сопротивление данного металла при комнатной темп-ре (Т = ЗООК), а [0605-3-23.jpg]-при темп-ре эксперимента. При этом различные данные, относящиеся к одному металлу, укладываются на одну кривую (правило Колера).

Осн. причина Г. я.-искривление траекторий носителей тока (электронов проводимости и дырок) в магнитном поле (см. Лоренца сила). Траектория носителей в магнитном поле может существенно отличаться от траектории свободного электрона в магнитном поле - круговой спирали, навитой на магнитную силовую линию. Разнообразие траекторий носителей тока у различных проводников - причина разнообразия Г. я., а зависимость траектории от направления магнитного поля - причина анизотропии Г. я. в монокристаллах. Мерой влияния магнитного поля на траекторию электрона является отношение длины свободного пробега I электрона к радиусу кривизны его траектории в поле H: rH = ср/еН (р-импульс электрона). По отношению к Г. я. магнитное поле считают слабым, если [0605-3-24.jpg]= = el/ср, и сильным, если[0605-3-25.jpg]

При комнатных темп-pax для различных металлов и хорошо проводящих полупроводников Н0 ~ 105-107э, для плохо проводящих полупроводников Н0~108-109э. Понижение темп-ры увеличивает длину пробега l и потому уменьшает значение Но. Это позволяет, используя низкие темп-ры и обычные магнитные поля (~104Э), осуществлять условия, соответствующие сильному полю Н>> Н0.

Измерение сопротивления монокри-еталлич. образцов металлов в сильных магнитных полях - один из важных методов изучения металлов. Исследуется зависимость сопротивления от величины магнитного поля и его направления относительно кристаллографич. осей. Теория Г. я. показала, что зависимость сопротивления от поля Н существенно связана с энергетич. спектром электронов. Резкая анизотропия сопротивления в сильных магнитных полях (у Au, Ag, Си, Sn и др.) означает существ, анизотропию Ферми поверхности. И, наоборот, небольшая анизотропия сопротивления в магнитном поле означает практич. изотропию поверхности Ферми. При этом, если с ростом магнитного поля для всех направлений р не стремится к насыщению (Bi, As и др.), то электроны и дырки содержатся в проводниках в равных количествах. Стремление сопротивления к насыщению означает, что преобладают либо электроны, либо дырки (тип носителей может быть установлен по знаку постоянной Холла).

Наряду с поперечными Г. я. наблюдается также небольшое изменение сопротивления металлов в магнитном поле, параллельном току I: [0605-3-26.jpg]наз. продольным гальваномагнитным эффектом. В сильных магнитных полях обнаруживаются квантовые эффекты, проявляющиеся в немонотонной (осциллирующей) зависимости постоянной Холла и сопротивления от поля Н.

При изучении Г. я. в тонких плёнках и проволоках имеет место зависимость от размеров и формы образца (размерные эффекты). С ростом Н при rH<
Лит.: Лифшиц И. М., Каганов М. И., Некоторые вопросы электронной теории металлов, "Успехи физических наук", 1965, т. 87, в. 3; Займам Д ж., Принципы теории твердого тела, пер. с англ., М., 1966. М. И. Коганов.

ГАЛЬВАНОМЕТР (от гальвано... и ...метр), высокочувствительный электроизмерительный прибор, реагирующий на весьма малую силу тока или напряжение. Наиболее часто Г. используют в качестве нуль-индикаторов, т. е. устройств для индикации отсутствия тока или напряжения в электрич. цепи. Применяют Г. и для измерений малых силы тока и напряжения, определив предварительно постоянную прибора (цену деления шкалы). Различают Г. постоянного и переменного тока. Первые Г. постоянного тока были созданы в 20-х годах 19 в. и по принципу действия являлись приборами магнитоэлектрической системы (см. Магнитоэлектрический прибор измерительный). Они состояли из магнитной стрелки, подвешенной на тонкой нити и помещённой внутри катушки из проволоки. При отсутствии тока в катушке стрелка устанавливается по магнитному меридиану данного места. Появление тока вызывает отклонение стрелки от первоначального положения. В 19 в. было создано много конструктивных разновидностей Г. с подвижной магнитной стрелкой и они широко применялись при научных исследованиях электромагнитных явлений. Так, напр., в 1886 Г. Кольрауш, пользуясь таким Г., определил с высокой точностью электрохим. эквивалент серебра.

В 1881 франц. учёный Ж. А. д'Арсонваль создал Г. с подвижной катушкой, в к-ром подвижным элементом служил проводник с током, помещённый в поле постоянного магнита. В зависимости от конструкции подвижной части такие Г. подразделяют на Г. рамочные, вибрационные и зеркальные.
[0605-3-27.jpg]

Рис. 1. Рамочныйгальванометр: 1- постоянный магнит; 2- рамка; 3 - стрелка-указатель; 4- выводы рамки; 5 - шкала.

(подвижная часть - рамка с неск. витками проволоки), петлевые (подвижная часть - петля из одного витка проволоки) и струнные (подвижная часть - провод, натянутый как струна). В качестве примера на рис. 1 показано устройство рамочного Г. В поле постоянного магнита 1 расположена рамка 2, на оси к-рой укреплена стрелка-указатель 3. Протекающий по виткам рамки ток взаимодействует с полем постоянного магнита и создаёт вращающий момент, вызывающий поворот подвижной части и соответственно перемещение стрелки относительно шкалы. Для повышения чувствительности Г. на подвижной части вместо стрелки-указателя укрепляют миниатюрное зеркальце оптич. отсчётного устройства. На рис. 2 показан зеркальный Г. с оптическим устройством. Луч света от осветителя 1 падает на зеркальце 3 и, отражаясь от него, попадает на шкалу 4. Шкалу устанавливают на расстоянии 1,5-2 м от Г., поэтому даже весьма малые угловые перемещения зеркальца вызывают заметные отклонения светового пятна на шкале от его нулевогоположения. Разновидностью являются Г. со световым отсчётом, у к-рых осветитель и шкала размещены в одном корпусе с механизмом Г. В этом случае для получения достаточной длины светового луча применяют многократное отражение его от неск. неподвижных зеркал.

Рис. 2. Зеркальный гальванометр: 1 - осветитель (лампа); 2 - гальванометр; 3 - зеркальце; 4 - шкала.
[0605-3-28.jpg]

При прохождении по обмотке Г. кратковременного импульса тока получается баллистич. отброс подвижной части из нулевого положения с последующим возвращением к нему после неск. колебаний. Если длительность импульса значительно меньше периода собств. колебаний подвижной части, то первое наибольшее отклонение указателя пропорционально количеству электричества, перенесённого импульсом. Для измерения количества электричества при сравнительно продолжит, импульсах изготовляют Г. баллистические, у к-рых момент инерции подвижной части значительно бо