БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ице. Коэфф. Р зависит от природы газа, поэтому обычно Г. веществ сравнивают по их коэфф. водородопроницаемости. Ниже приведены значения Р (см2/сек*am) нек-рых материалов при 20°С:




Металлы

10-18-10-12





Стёкла

10-15-10-10





Полимеры (плёнки)

10-12-10-5





Жидкости

10-7-10-5





Бумага , кожа

10-5-10




Широко применяемые во всех областях произ-ва полимерные материалы занимают по своей Г. промежуточное положение между неорганич. твёрдыми материалами и жидкостями. Значение Р (в единицах 108 см2/сек • am) для полимерных материалов составляет:




Кремнийорганич. каучук

390





Натуральный каучук

30





Полистирол

6,9





Полиэтилен низкой плотности

5,9





Найлон

0,7





Полиэтилентерефталат (лавсан)

0,5




Наибольшей Г. обладают аморфные полимеры с очень гибкими молекулярными цепями, находящиеся в высоко-эластическом состоянии (каучук). Кри-сталлич. полимеры (напр., полиэтилен) имеют значительно меньшую Г. Очень малой Г. обладают высокомолекулярные стеклообразные полимеры с жёсткими цепями. Объясняется это тем, что более гибкие цепи легко смещаются, пропуская молекулы диффундирующего газа.

ГАЗОРАЗРЯДНЫЕ ИСТОЧНИКИ СВЕТА, приборы, в к-рых электрич. энергия преобразуется в оптич. излучение при прохождении электрич. тока через газы и др. вещества (напр., ртуть), находящиеся в парообразном состоянии. Исследуя дуговой разряд, рус. учёный В. В. Петров в 1802 обратил внимание на сопровождавшие его световые явления. В 1876 рус. инженером П. Н. Яблочковым была изобретена дуговая угольная лампа переменного тока, положившая начало практич. использованию электрич. разряда для освещения. Создание газосветных трубок относится к 1850 - 1910. В 30-х гг. 20 в. начались интенсивные исследования по применению люминофоров в газосветных трубках. Исследованием, разработкой и произ-вом Г. и. с. в СССР начиная с 30-х гг. занималась группа учёных и инженеров Физич. ин-та АН СССР, Московского электролампового завода, Всесоюзного электротехнич. ин-та. Первые образцы ртутных ламп были изготовлены в СССР в 1927, газосветных ламп - в 1928, натриевых ламп - в 1935. Люминесцентные лампы в СССР были разработаны в 1938 группой учёных и инженеров под руководством акад. С. И. Вавилова.

Г. и. с. представляет собой стеклянную, керамич. или металлическую (с прозрачным выходным окном) оболочку цилинд-рич., сферич. или иной формы, содержащую газ, иногда нек-рое кол-во металла или др. вещества (напр., галоидной соли) с достаточно высокой упругостью пара. В оболочку герметично вмонтированы (напр., впаяны) электроды, между к-рыми происходит разряд. Существуют Г. и. с. с электродами, работающими в открытой атмосфере или протоке газа, напр, угольная дуга.

Различают газосветные лампы, в к-рых излучение создаётся возбуждёнными атомами, молекулами, рекомбинирующими ионами и электронами; люминесцентные лампы, в к-рых источником излучения являются люминофоры, возбуждаемые излучением газового разряда; элект-родосветные лампы, в к-рых излучение создаётся электродами, разогретыми разрядом.

В большинстве Г. и. с. используется излучение положительного столба дугового разряда (реже тлеющего разряда, напр, в газосветных трубках), в импульсных лампах - искровой разряд, переходящий в дуговой. Существуют лампы дугового разряда с низким [от 0,133 н/м2(10-3 мм рт. ст.)], напр. натриевая лампа низкого давления (рис., а), высоким (от 0,2 до 15 am;, 1 am= 98066,5 н/м2) и сверхвысоким (от 20 до 100 am и более, напр, ксеноновые газоразрядные лампы) давлением.

Газоразрядные источники света: а - натриевая лампа низкого давления; б - люминесцентная лампа; в - ртутная лампа высокого давления с исправленной цветностью; г - ксеноновая лампа сверхвысокого давления; д - натриевая лампа высокого давления с колбой из поликристаллической окиси алюминия.

Г. и. с. применяют для общего освещения, облучения, сигнализации и др. целей. В Г. и. с. для общего освещения важны высокая световая отдача, приемлемый цвет, простота и надёжность в эксплуатации. Наиболее массовыми Г. и. с. для общего освещения являются люминесцентные лампы (рис., б). Световая отдача люминесцентных ламп достигает 80 лм/вт, а срок службы до 10 и более тыс. ч. Для освещения загородных автострад применяются натриевые лампы низкого давления со световой отдачей до 140 лм/вт, а для освещения улиц - ртутные лампы высокого давления с исправленной цветностью (рис., в). Для специальных целей важны такие характеристики Г. и. с., как яркость и цвет (напр., ксеноновые лампы сверхвысокого давления для киноаппаратуры, рис., г), спектральный состав и мощность (ртутноталлиевые лампы погружного типа для пром. фотохимии), мощность и идентичность спектрального состава излучения солнечному (ксеноновые лампы в метал-лич. оболочке для имитаторов солнечного излучения), амплитудные и временные характеристики излучения (импульсные лампы для скоростной фотографии, стробоскопии и т. д.).

В связи с разработкой новых высокотемпературных и химически стойких материалов для оболочек ламп и открытием технологич. приёма введения в лампу излучающих элементов в виде легколетучих соединений появились новые перспективы развития и применения Г. и. с. Напр., ртутная лампа с добавкой иодидов таллия, натрия и индия обладает световой отдачей до 80-95 лм/вт и хорошей цветопередачей. В натриевой лампе высокого давления (рис., д), создание к-рой стало возможным благодаря применению оболочки из высокотемпературной керамики на основе окиси алюминия, световая отдача достигает 100- 120 лм/вт.

Лит.: Фабрикант В. А., Механизм излучения газового разряда, "Тр. Всесоюзного электротехнического ин-та", 1940, в. 41; Иванов А. П., Электрические источники света, М.- Л., 1948; Рохлин Г. Н., Газоразрядные источники света, М., 1966; Фугенфиров М. И., Что нужно знать о газоразрядных лампах, М., 1968. Г. Н. Рохлин, Г. С. Сарычев.

ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ, то же, что ионные приборы.

ГАЗОРАСПРЕДЕЛЕНИЕ в двигателе внутреннего сгорания, периодическое действие впускных и выпускных органов двигателя, обеспечивающее заполнение цилиндра свежим зарядом (всасывание, впуск) и удаление отработавших газов (выхлоп, выпуск). В зависимости от типа и конструкции двигателя Г. может быть клапанным, шайбовым, золотниковым (бесклапанным), щелевым и комбинированным. При клапанном Г. известны два осн. вида расположения клапанов: в головке цилиндров - верхняя, или подвесная, система (рис. 1, a) и т. н. нижняя, или боковая, система (рис. 1, б). В подвесной системе клапаны приводятся в движение с помощью кулачков распределительного валика, приводимого от коленчатого вала двигателя через шестерёнчатую или цепную передачу.

Рнс. 1. Клапанное газораспределение: а - верхняя, пли подвесная, система: 6 - нижняя, или боковая, система.

В судовых и тепловозных двигателях внутр. сгорания (дизелях) в системе Г. имеются дополнит, кулачки и реверсивные устройства (см. Реверс), позволяющие изменять направление вращения коленчатого вала.

Шайбовое Г. осуществляется с помощью плоских вращающихся шестерён и шайб с вырезанными в них окнами. При вращении шайбы её окна совмещаются с окнами в днище и головке цилиндра, в это время осуществляется процесс Г. Золотниковое (бесклапанное) Г. выполняют золотники, имеющие привод от коленчатого вала двигателя.

Щелевое Г. применяется в двухтактных двигателях. В стенках цилиндра Имеются щели (окна), к-рые открываются и закрываются движущимся в цилиндре поршнем.

Наиболее распространённым видом комбинированного Г. является клапанно-щелевое (рис, 2), при котором выхлоп осуществляется через выпускной клапан, а всасывание - через щелевое устройство.

Рис. 2. Комбинированное клапанно-щелевое газораспределение.

Лит. см. при статьях Двигатель внутреннего сгорания и Дизель. Г. С. Скубачевский,

ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ, служит для понижения давления газа до уровня, необходимого по условиям его безопасного потребления.

По назначению различают неск. типов Г. с.: станции на ответвлении магистрального газопровода (на конечном участке его ответвления к населённому пункту или пром. объекту) производительностью от 5-10 до 300-500 тыс. м3 в час; промысловая Г. с. для подготовки газа (удаление пыли, влаги), добытого на промысле, а также для снабжения газом близлежащего к промыслу населённого пункта; коптрольно-распределит. пункты, размещаемые на ответвлениях от магистральных газопроводов к пром. или с.-х. объектам, а также для питания кольцевой системы газопроводов вокруг города (производительностью от 2-3 до 10-12 тыс. м3 в час); автоматич. Г. с. для снабжения газом небольших населённых пунктов, совхозных и колхозных посёлков на ответвлениях от магистральных газопроводов (производительностью 1-3 тыс. м3 в час); газорегуляторные пункты (производительностью от 1 до 30 тыс. м3 в час) для снижения давления газа и поддержания его на заданном уровне на городских газовых сетях высокого и среднего давления; газорегуляторные установки для питания газовых сетей или целиком объектов с расходом газа до 1,5 тыс. м3 в час.

Г. с. на магистральных газопроводах понижают начальное давление газа (напр., 5 Мн/м2, т. е. 50 кгс/см2) по одно-, двух- или трёхступенчатой схеме до 0,1 Мн/м2 и менее, на автоматич. Г. с. давление снижается с 5,5 до 3*10-2 Мн/м2; на газорегуляторных пунктах высокое давление (1,2 или 0,6 Мн/м2) снижается до среднего (0,3 Мн/м2) или низкого (300 мм вод. ст.). Ю. М. Белодворский.

ГАЗОРЕГУЛЯТОРНОЕ УСТРОЙСТВО, предназначено для автоматич. снижения и поддержания на заданном уровне давления газа в газопроводе путём изменения количества газа, протекающего через регулирующий клапан. Г. у. состоит из регулирующего клапана, чувствит.

Газорегуляторное устройство прямого действия: 1 - дроссельный клапан; 2- мембрана; 3 - импульсная трубка;

4 - пружина (груз) мембраны.
и управляющего элементов. Различают Г. у.: прямого действия (дроссельный клапан перемещается в результате изменения конечного давления) и непрямого действия (чувствит. элемент воздействует на регулируемый орган самостоят, источником энергии - воздухом, газом, жидкостью). Несмотря на то что Г. у. прямого действия обладают меньшей чувствительностью (по сравнению с регуляторами непрямого действия), в системах газоснабжения они нашли более широкое применение из-за простоты конструкции и удобства эксплуатации. Изменение давления газа, возникающее вследствие непостоянства его отбора, в Г. у. прямого действия (рис.) вызывает перемещение мембраны, а вместе с ней и изменение проходного сечения дроссельного устройства и, как следствие, уменьшение или увеличение количества газа, протекающего через Г. у.

Лит.: Газовое оборудование, приборы и арматура, М., 1963. Н. И. Рябцев.

ГАЗОРЕГУЛЯТОРНЫЙ ПУНКТ, система устройств для автоматич. снижения и поддержания постоянного давления газа в распределит, газопроводах. Г. п. включает регулятор давления для поддержания давления газа, фильтр для улавливания механич. примесей, предохранит, клапаны, препятствующие попаданию газа в распределительные газопроводы при аварийном давлении газа сверх допустимых параметров, и контролыю-измерит. приборы для учёта количества проходящего газа, темп-ры, давления и телеметрич. измерения этих параметров. Г. п. сооружаются на гор. распределит, газопроводах, а также на территории пром. и коммунально-бытовых предприятий, имеющих разветвлённую сеть газопроводов. Г. п., монтируемые непосредственно у потребителей и предназначенные для снабжения газом котлов, печей и др. агрегатов, обычно называют газорегуляторными устройствами. В зависимости от давления газа на входе Г. п. бывают: среднего (от 0,05 до 3 кгс/см2) и высокого (до 12 кгс/см2) давления (1 кгс/см2 = = 0,1Мн/м2).

ГАЗОСВЕТНАЯ ТРУБКА, высоковольтный газоразрядный источник света, в к-ром используется излучение положительного столба тлеющего разряда. Г. т. изготовляют из стекла, по концам впаивают цилиндрич. электроды из стали (реже никеля, алюминия и др. металлов), наполняют аргоном, неоном (реже др. газами) до давления 400-2100 н/м2 (3-16 мм рт. ст.) и нек-рым количеством ртути, включают в сеть переменного тока через трансформатор 1,2-13 кв с магнитным рассеянием. Г. т. имеют диаметр 10-30 мм и длину 0,1-3 м. С целью расширения цветовой гаммы излучения и повышения световой отдачи внутр. поверхность трубок покрывается люминофором. Яркость Г. т. обычно составляет около 1 кнт. Г. т. изгибают, придавая им форму букв, знаков, фигур, и применяют в рекламном, декоративном освещении, а также для сигнализации.

Г. С. Сарычев.

ГАЗОСНАБЖЕНИЕ, организованная подача и распределение газового топлива для нужд нар. х-ва. Для Г. используются: газы природные горючие; искусств, газы, получаемые при термич. переработке твёрдых и жидких топлив в газогенераторах и термич. печах (см. Газификация топлив); сжиженные газы, получаемые на газобензиновых и нефтеперерабатывающих з-дах при переработке нефти и попутных газов.

Природный газ является наиболее совершенным и экономичным видом топлива, ценным сырьём для химич. пром-сти (см. Газовая промышленность). С выявлением в СССР больших ресурсов природного газа получение искусств, газов, как менее экономичное и связанное с трудоёмкими процессами, утрачивает своё значение.

Наиболее крупные потребители природного газа - ТЭС и предприятия различных отраслей пром-сти (машиностроение, чёрная и цветная металлургия, пром-сть стройматериалов и др.). В коммунальном х-ве газ используется для приготовления пищи (в квартирах жилых зданий и на предприятиях обществ, питания); для технологич. нужд предприятий коммунально-бытового обслуживания; для нагревания воды, расходуемой для хоз.-бытовых и сан.-гигиенич. целей; для отопления, вентиляции и кондиционирования воздуха жилых и обществ, зданий. Общее потребление природного газа в коммунальном х-ве СССР в 1970 составило 24,1 млрд. м3, т. е. увеличилось по сравнению с 1965 в 1,8 раза, а к 1975 достигнет примерно 40 млрд. м3.

Г. городов и пром. предприятий природными и искусств, газами осуществляется по магистральным газопроводам, транспортирующим газ от мест его добычи или произ-ва к потребителям. Приём газа населённым пунктом или пром. объектом производится на контрольно-рас-пределит, пункте, где газ редуцируется до допускаемого нормами давления и поступает в гор. газовую сеть или на пром. предприятие. Различают системы Г. централизованные, в к-рых распределение газа потребителям производится по гор. газовой сети, и децентрализованные (местные) - от местных газогенерирующих установок или с использованием ёмкостей (цистерн, баллонов), заполненных сжиженными газами. Местные системы широко применяются в Г. жилых зданий и коммунально-бытовых предприятий малых городов и посёлков, особенно находящихся на значит, расстоянии от магистральных газопроводов.

Транспортировка сжиженных газов от газобензиновых з-дов к потребителям осуществляется по продуктопроводам, ж.-д. и автомоб. цистернами, а также в баллонах; получает развитие мор. транспорт сжиженных газов спец. судами - газовозами. Доставка осн. количества сжиженных газов на большие расстояния производится в ж.-д. цистернах. Для перевозки сжиженных газов с заводов и кустовых баз в СССР применяются также автоцистерны ёмкостью 12-15 м3, а на небольшие расстояния - ёмкостью 4 м3. Баллоны с сжиженным газом перевозятся, как правило, в специально оборудованных автомобилях.

Для надёжной работы системы Г. вблизи крупных городов сооружаются подземные хранилища газа (см. Газовое хранилище).

Для Г. малоэтажных жилых зданий и небольших коммунальных предприятий обычно применяются газобаллонные установки, состоящие из 1 или 2 баллонов со сжиженным газом, регулятора давления и газовых приборов (плита, водонагреватель). Установка с одним баллоном размещается в том же помещении, где и газовый прибор; с двумя баллонами - в металлич. шкафу, устанавливаемом снаружи у стен зданий. Г. многоэтажных зданий осуществляется от групповых газобаллонных установок и установок, состоящих из подземных резервуаров. Подача газа в здания к газовым приборам происходит по газовым сетям, как и при Г. природным газом.

Г. городов, сельских населённых мест, пром. предприятий, дальнейшее расширение областей использования природного газа повышают уровень культуры про-из-ва и быта населения. Наряду с этим высокий кпд газовых приборов позволяет сократить расходы топлива на техноло-гич. и коммунально-бытовые нужды, снизить долю др. видов топлива в топливном балансе, разгрузить ж.-д. и водный транспорт. Перевод ТЭЦ и котельных с многозольного топлива на газ, применение сжиженного газа в качестве топлива для автомоб. транспорта способствуют оздоровлению воздушных бассейнов городов.

Лит.: Стаскевич Н. Л., Справочное руководство по газоснабжению, Л., 1960; Демидов Г. В., Городское газовое хозяйство, 2 изд., М., 1964; Стаскевич Н. Л., Майзельс П. Б.,Вигдорчик Д. Я., Справочник по сжиженным углеводородным газам, Л., 1964; Кортунов А. К., Газовая промышленность СССР, М., 1967. П. Б. Майзелъс.

ГАЗОСПАСАТЕЛЬНОЕ ДЕЛО, комплекс мероприятий по обеспечению газобезопасности работы газо-,взрыво- и пожароопасных пром. предприятий (добывающих, перерабатывающих или потребляющих токсич., удушающие или взрывчатые газы, легковоспламеняющиеся жидкости, металлич., угольные, алюминиевые порошки, карбонилы и др.). Г. д. включает профилактику аварий и ликвидацию их последствий, наблюдение за содержанием вредных и опасных примесей в воздухе пром. помещений, проверку средств газовой защиты, обучение персонала предприятий пользованию ими и пр. Для спасения людей при авариях, сопровождающихся повышением содержания отравляющи