БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

азрабатывающие одиночный пласт, ко 2-й - свиту пластов. Для 1-й группы при выемке пласта с незначит. потерями характерно выделение в призабойном пространстве ев. 75%, а в выработанном - менее 25% общего дебита метана на выемочном участке. Отличительная особенность 2-й группы - выделение в призабойном пространстве 50-60% и менее, а в выработанном 40-50% и более общего дебита метана в пределах выемочного поля.

ГАЗОВЫЙ ДВИГАТЕЛЬ, двигатель внутр. сгорания, работающий на газообразном топливе: природном и нефтяном (попутном) газах, а также сжиженном газе (пропано-бутановая смесь), доменных, генераторных и др. газах. Преимущества Г. д. перед жидкотопливны-ми: значительно меньший износ осн. деталей благодаря более совершенному смесеобразованию и сгоранию; отсутствие в выхлопных газах вредных примесей; возможность применения более высокой степени сжатия, чем в двигателях, работающих на бензине. Эффективный кпд совр. стационарных Г. д. достигает 42%. Наиболее распространены Г. д., работающие по циклу дизеля (см. Газодизель). Г. д. мощностью до 12 тыс. квт (16 тыс. л. с.) используются в качестве энер-гетич. источника в различных отраслях народного хозяйства, особенно в газовой и нефтяной промышленности в качестве привода газоперекачивающих установок.

Г. д., работающие на сжиженном газе (газожидкостные двигате-л и), применяют в тех случаях, когда важно обеспечить безвредность и бездым-ность выхлопных газов, напр, при работе автомобилей, автопогрузчиков и тягачей в складских и подземных помещениях, для гор. автобусов и т. п.

Лит.:Генкин К. И., Газовые двигатели, М., 1962; Коллеров Л. К., Газовые двигатели поршневого типа, 2 изд., Л., 1968. К.И. Генкин.

ГАЗОВЫЙ КАРОТАЖ, метод выявления нефтяных и газовых залежей путём систематического определения газообразных и лёгких жидких углеводородов в буровом растворе, реже в керне.

При пробуривании скважин через неф-тегазоносный пласт углеводороды попадают в буровой раствор, к-рый и выносит их на поверхность. Производится эпизо-дич. или непрерывная дегазация бурового раствора, а полученный газ анализируется. Результаты анализов наносятся на диаграммы, показывающие изменения состава и содержания углеводородов по разрезу скважины. По этим диаграммам определяется глубина нахождения нефтеносного или газоносного пласта.

Для проведения работ применяются газокаротажные станции - автомашины, в к-рых располагаются различные приборы, позволяющие следить за глубиной забоя скважины, скоростью её проходки и циркуляцией бурового раствора, анализировать газ, поступающий из дегазатора, определять присутствие нефти в буровом растворе и др. Результаты анализов газа автоматически регистрируются с помощью самописца. Учитывая скорость проходки скважины и её глубину, вносятся поправки, позволяющие более точно определить местоположение залежей нефти и газа по разрезу скважины.

Г. к. проводится также и при остановке бурения скважины. Буровой раствор стоит нек-рое время в скважине и обогащается углеводородами на тех участках раствора, к-рые находятся против нефтеносных и газоносных пластов. Затем начинается обычная циркуляция бурового раствора (как при бурении скважины) и проводится Г. к., позволяющий определить интервалы раствора, обогащённые углеводородами. Вводя поправки, учитывающие глубину скважины и скорость циркуляции бурового раствора, определяют местоположение нефтяных и газовых залежей по разрезу скважины.

Проводится также Г. к. по кернам, к-рые подвергаются дегазации, а извлечённый газ анализируется. Результаты анализов позволяют делать выводы о местоположении нефтегазоносных пластов. Метод Г. к. используется также для изучения газоносности угольных пластов. В перспективе предусматривается совместное применение Г. к. с электрокаротажем.

Г. к. впервые был разработан в СССР (1933).

Лит.: Соколов В. А., Юровский Ю. М., Теория и практика газового каротажа, М., 1961; Юровский Ю. М., Разрешающие способности газового каротажа, М., 1964. Ю. М. Юровский.

ГАЗОВЫЙ КОНДЕНСАТОР, конденсатор с газообразным диэлектриком; к Г. к. относятся газонаполненные, воздушные и вакуумные конденсаторы. Применяются в электрич. цепях, приборах и устройствах с напряжением от долей в до сотен к в, при частотах до сотен Мгц (см. Конденсатор электрический).

ГАЗОВЫЙ ЛАЗЕР, лазер с газообразной активной средой. Трубка с активным газом помещается в оптический резонатор, состоящий в простейшем случае из двух параллельных зеркал. Одно из них является полупрозрачным.

Испущенная в к.-л. месте трубки световая волна при распространении её через газ усиливается за счёт актов вынужденного испускания, порождающих лавину фотонов. Дойдя до полупрозрачного зеркала, волна частично проходит через него. Эта часть световой энергии излучается Г. л. вовне. Другая же часть отражается от зеркала и даёт начало новой лавине фотонов. Все фотоны идентичны по частоте, фазе и направлений распространения. Благодаря этому излучение лазера может обладать чрезвычайно большой монохроматичностью, мощностью и резкой направленностью (см. Лазер, Квантовая электроника).

Первый Г. л. был создан в США в 1960 А. Джаваном. Существующие Г. л. работают в очень широком диапазоне длин волн - от ультрафиолетового излучения до далёкого инфракрасного излучения-как в импульсном, так и в непрерывном режиме. В табл. приведены нек-рые данные о наиболее распространённых Г. л. непрерывного действия.
Лазер

Длина волны, мкм

Мощность , вт
Кадмиевый

0,3250

несколько тысячных долей
Кадмиевый

0,4416

десятые доли
Аргоновый

0,4880

единицы
Аргоновый

0,5145

десятки
Криптоновый

0,5682

единицы
Гелий-неоновый

0,6328

десятые доли
Гелий-неоновый

1,1523

сотые доли
Ксеноновый

2,0261

сотые доли
Гелий -неоновый

3,3912

сотые доли
СО-лазер

5,6-5,9

сотни
СО2-лазер

9,4-10,6

дес. тысяч
Лазер на молекулах HCN

337

тысячные доли

Из Г. л., работающих только в импульсном режиме, наибольший интерес представляют лазеры ультрафиолетового диапазона на ионах Ne ([0601-5.jpg] = 0,2358 мкм и [0601-6.jpg]= 0,3328 мкм) и на молекулах N2 ([0601-7.jpg]=0,3371 мкм). Азотный лазер обладает большой импульсной мощностью.

В излучении Г. л. наиболее отчётливо проявляются характерные свойства лазерного излучения - высокая направленность и монохроматичность. Существенным достоинством является их способность работать в непрерывном режиме. Применение новых методов возбуждения (см. ниже) и переход к более высоким давлениям газа могут резко увеличить мощность Г. л. С помощью Г. л. возможно дальнейшее освоение далёкого инфракрасного диапазона, диапазонов ультрафиолетового и рентгеновского излучений. Открываются новые области применения Г. л., напр, в космич. исследованиях.

Особенности газов как лазерных материалов. По сравнению с твёрдыми телами и жидкостями газы обладают существенно меньшей плотностью и более высокой однородностью. Поэтому световой луч в газе практически не искажается, не рассеивается и не испытывает потерь энергии. В таких лазерах сравнительно просто возбудить только один тип электромагнитных волн (одну моду). В результате направленность лазерного излучения резко увеличивается, достигая предела, обусловленного дифракцией света. Расходимость светового луча Г. л. в области видимого света составляет 10-5 -10-4рад, а в инфракрасной ббласти 10-4-10-3рад.

В отличие от твёрдых тел и жидкостей, составляющие газ частицы (атомы, молекулы или ионы) взаимодействуют друг с другом только при соударениях в процессе теплового движения. Это взаимодействие слабо влияет на расположение уровней энергии частиц. Поэтому энер-гетич. спектр гача соответствует уровням энергии отд. частиц. Спектральные линии, соответствующие переходам частиц с одного уровн!' энергии на другой, в газе уширены незнччительно. Узость спектральных линий в газе приводит к тому, что в линию попадает мало мод резонатора.

Т. к. газ практически не влияет на распространение излучения в резонаторе, стабильность частоты излучения Г. л. зависит гл. обр. от неподвижности зеркал и всей конструкции резонатора. Это приводит к чрезвычайно высокой стабильности частоты излучения Г. л. Частота со излучения Г. л. воспроизводится с точностью до 10~и, а относит, стабильность частоты.
[0601-8.jpg]

Малая плотность газов препятствует получению высокой концентрации возбуждённых частиц. Поэтому плотность генерируемой энергии у Г. л. существенно ниже, чем у твердотельных лазеров.

Создание активной газовой среды в газоразрядных лазерах. Активной средой Г. л. является совокупность возбуждённых частиц газа (атомов, молекул, ионов), обладающих инверсией населённостей. Это означает, что число частиц, "населяющих" более высокие уровни энергии, больше, чем число частиц, находящихся на более низких энергетич. уровнях. В обычных условиях теп гового равновесия имеет место обратная картина - населённость низших уровней больше, чем более высоких (см. Больцмана статистика). В случае инверсии населённостей акты вынужденного испускания фотонов с энергией [0601-9.jpg]сопровождающие вынужденный переход частиц с верхнего уровня [0601-10.jpg]на нижний преобладают над актами поглощения [0601-11.jpg]этих фотонов. В результате этого активный газ может генерировать электромагнитное излучение частоты [0601-12.jpg](или с длиной волны[0601-13.jpg]

Одна из особенностей газа (или смеси газов) - многообразие физич. процессов, приводящих к его возбуждению и созданию в нём инверсии населённостей. Возбуждение активной среды излучением газоразрядных ламп, нашедшее широкое применение в твердотельных и жидкостных лазерах, мало эффективно для получения инверсии населённостей в Г. л., т. к. газы обладают узкими линиями поглощения, а лампы излучают свет в широком интервале длин волн. В результате может быть использована только ничтожная часть мощности источника накачки (кпд мал). В подавляющем большинстве Г. л. инверсия населённостей создаётся в электрич. разряде (газоразрядные лазеры). Электроны, образующиеся в разряде, при столкновениях с частицами газа (электронный удар) возбуждают их, переводя на более высокие уровни энергии. Если время жизни частиц на верхнем уровне энергии больше, чем на нижнем, то в газе создаётся устойчивая инверсия населённостей. Возбуждение атомов и молекул элактронным ударом является наиболее разработанным методом получения инверсии населённостей в газах. Метод электронного удара применим для возбуждения Г. л. как в непрерывном, так и в импульсном режимах. Возбуждение электронным ударом удачно сочетается с др. механизмом возбуждения - передачей энергии, необходимой для возбуждения частиц одного сорта от частиц др. сорта при неупругих соударениях (резонансная передача возбуждения). Такая передача весьма эффективна при совпадении уровней энергии у частиц разного сорта (рис. 1).

[0601-14.jpg]

Рис. 1. Схема уровней энергии вспомогательных и рабочих частиц газоразрядного лазера.

В этих случаях создание активной среды происходит в два этапа: сначала электроны возбуждают частицы вспомогат. газа, затем эти частицы в процессе неупругих соударений с частицами рабоче-го газа передают им энергию. В результате этого населяется верхний лазерный уровень. Чтобы хорошо накапливалась энергия, верхний уровень энергии вспомогат. газа должен обладать большим собств. временем жизни. Именно по такой схеме осуществляется инверсия населённостей в гелий-неоновом лазере.

Гелий-неоновый лазер (А. Джаван, США, 1960). В гелий-неоновом лазере рабочим веществом являются нейтральные атомы неона Ne. Атомы гелия Не служат для передачи энергии возбуждения. В электрич. разряде часть атомов Ne переходит с осн. уровня[0601-15.jpg] на возбуждённый верхний уровень энергии [0601-16.jpg]Но в чистом Ne время жизни на уровне [0601-17.jpg]мало, атомы быстро "соскакивают" с него на уровни [0601-18.jpg]и [0601-19.jpg]что препятствует созданию достаточно высокой инверсии населённостей для пары уровней [0601-20.jpg]и [0601-21.jpg]Примесь Не существенно меняет ситуацию. Первый возбуждённый уровень Не совпадает с верхним уровнем неона. Поэтому при столкновении [0601-22.jpg]возбуждённых электронным ударом атомов Не с невозбуждёнными атомами Ne (с энергией [0601-23.jpg]) происходит передача возбуждения, в результате которой атомы Ne будут возбуждены, а атомы Не вернутся в основное состояние. При достаточно большом количестве атомов Не можно добиться преимуществ, заселения уровня [0601-24.jpg]неона. Этому же способствует опустошение уровня [0601-25.jpg]неона, происходящее при соударениях атомов со стенками газоразрядной трубки. Для эффективного опустошения уровня [0601-26.jpg]диаметр трубки должен быть достаточно мал. Однако малый диаметр трубки ограничивает количество Ne и, следовательно, мощность генерации. Оптимальным, с точки зрения макс, мощности генерации, является диаметр ок. 7 мм. Т. о., в результате спец. подбора количеств (парциальных давлений) Ne и Не и при правильном выборе диаметра газоразрядной трубки устанавливается стационарная инверсия населённостей уровней энергии [0601-27.jpg]неона.

Уровни неона [0601-28.jpg]обладают сложной структурой, т. е. состоят из множества подуровней. В результате гелий-неоновый лазер может работать на 30 длинах волн в области видимого света и инфракрасного излучения. Зеркала оптич. резонатора имеют многослойные диэлект-рич. покрытия. Это позволяет создать необходимый коэфф. отражения для заданной длины волны и возбудить тем самым в Г. л. генерацию на требуемой частоте.

Осн. конструктивный элемент гелий-неонового лазера - газоразрядная трубка (обычно из кварца). Давление газа в разряде 1 мм рт. ст., причём количество Не обычно в 10 раз больше, чем Ne. На рис. 2 приведена конструкция гелий-неонового лазера, разработанная для применения в открытом космосе. Разрядная трубка с внутр. диаметром 1,5 мм из корундовой керамики помещена между полупрозрачным зеркалом и отражающей призмой, смонтированными на жёсткой бериллиевой трубе (цилиндре). Разряд осуществляется на постоянном токе (8 ма, 1000 в) в двух секциях (каждая длиной 127 мм) с общим центр, катодом. Холодный оксиднотанталовый катод (диаметром 48 мм и длиной 51 мм) разделён на 2 половины диэлектрич. прокладкой, обеспечивающей более однородное распределение тока по поверхности катода. Вакуумные сильфоны из нержавеющей стали, являющиеся анодами, образуют подвижное соединение каждой трубки с держателями зеркала и призмы. Кожух завершён с левого конца выходным окном. Лазер рассчитан на работу в космосе в течение 10 000 ч.

[0601-29.jpg]

Рис. 2. Поперечное сечение конструкции гелий-неонового лазера для космических исследований.



Мощность излучения гелий-неоновых лазеров может достигать десятых долей вт, кпд не превышает 0,01%, но высокая монохроматичность и направленность излучения, простота в обращении и надёжность конструкции обусловили их широкое применение. Красный гелий-неоновый лазер [0601-30.jpg]используется при юстировочных и нивелировочных работах (шахтные работы, кораблестроение, строительство больших сооружений). Гелий-неоновый лазер широко применяется в оптич. связи и локации, в голографии и в квантовых гироскопах.

Лазер на углекислом газе (К. Пател, США, ф. Легей, Н. Легей-Соммер, Франция, 1964). Молекулы, в отличие от атомов, имеют не только электронные, но и т. н. колебательные уровни энергии, обусловленные колебаниями атомов, составляющих молекулу, относительно положений равновесия (см. Молекула). Переходы между колебат. уровнями энергии соответствуют инфракрасному излучению. Лазеры, в к-рых используются эти переходы, наз. молекулярными. Из числа молекулярных лазеров особенно интересен лазер, в к-ром используются колебат. уровни молекулы СО2, между к-рыми создаётся инверсия на-селённостей (СО2-лазер).

В газоразрядных СО2 -лазерах инверсия населённостей также достигается возбуждением молекул электронным ударом и резонансной передачей возбуждения. Для передачи энергии возбуждения служат молекулы азота N2, возбуждаемые, в свою очередь, электронным ударом. Обычно в условиях тлеющего разряда ок. 90% молекул азота переходит в возбуждённое состояние, время жизни к-рого очень велико. Молекулярный азот хорошо аккумулирует энергию возбуждения и легко передаёт её молекулам ССЬ в процессе неупругих соударений. Высокая инверсия населённостей достигается при добавлении в разрядную смесь Не, к-рый, во-первых, облегчает условия возникновения разряда и, во-вторых, в силу своей высокой теплопроводности охлаждает разряд и способствует опустошению нижних лазерных уровней молекулы СО2. Эффективное возбуждение СО2-ла-зеров может быть достигнуто химич. или газодинамич. методами.

Тонкая структура колебательных уровней молекулы СО2 позволяет изменять длину волны (перестраивать лазер) скачками через 30-50 Ггц в интервале длин волн от 9,4 до 10,6 мкм.

CCh-лазеры обладают высокой мощностью (наибольшая мощность лазерного излучения в непрерывном режиме) и высоким кпд. При возбуждении молекул СО2 электронным ударом и длине газоразрядной трубы 200 м СО2-лазер излучает мощность 9 квт. Существуют компактные конструкции с выходной мощностью в 1 кет. Кроме высокой выходной мощности, СО2-лазеры обладают большим кпд, достигающим 15-20% (возможно достижение кпд 40%). СО2-ла-зеры могут принципиально эффективно работать и в импульсном режиме. Перечисленные особенности СО2-лазеров обусловливают многообразие их применения: технологич. процессы (резание, сварка), локация и связь (атмосфера прозрачна для волн с[0601-31.jpg]=10 мкм), фи-зич. исследования, связанные с получением и изучением высокотемпературной плазмы (высокая мощность излучения), исследование материалов и т. д.

Газоразрядные трубки СО2-лазеров имеют диаметр от 2 до 10 см, длина их может быть очень большой (рис. 3). Обычно применяются секционные (модульные) конструкции с током разряда до неск. а при напряжениях до 10 кв на секцию. Т. к. мощность СО2-лазеров непрерывног