БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ков с краской наносить её избирательно, только на печатающие элементы и передавать с них краску на запечатываемую поверхность. Благодаря относительной простоте и быстроте изготовления печатных форм (в особенности для воспроизведения текста), хорошему качеству продукции и высокой производительности, В. п. широко применяется для печатания газет, журналов, книг, многокрасочных иллюстраций и т. п. Характерными признаками оттисков, полученных В. п., являются чёткость и резкость элементов изображения, большая насыщенность их краской и наличие небольшого рельефа на обратной стороне листа.

Принцип В. п. используется уже более 1000 лет. Первые печатные формы представляли собой плоские, с ровной и гладкой поверхностью деревянные доски, на к-рых изображение получали, вырезая (углубляя) непечатающие пробельные элементы. Такие формы применяют иногда и теперь в качестве одного из приёмов художественной репродукции (см. Ксилография, Гравюра). Изобретение книгопечатания и широкое развитие В. п. связаны, прежде всего, с созданием составных печатных форм из отдельных литых или резных литер и знаков. Совр. текстовые формы В. п. составляют вручную из отдельных, предварительно отлитых букв и знаков, либо набирают на наборных машинах (букво- и строкоотливных), а также на фотонаборных. Различные изображения (иллюстрации) в В. п. печатают с клише,полученных травлением (цинкография) или гравированием.. Различают печатные формы первичные и вторичные. Первичные, или оригинальные, формы В. п.- плоские формы, включающие набор и клише, с к-рых непосредственно производится печать, а также т. н. гибкие формы, рельефное изображение на к-рых получено травлением пробелов на металлич. пластине или "вымыванием" их в фотополимерном слое, нанесённом на подложку. Вторичные формы, или стереотип, получают с первичных, гл. обр. для их размножения или для изготовления круглых форм с целью печатания на ротационной печатной машине. Совр. вторичные формы В. п.- металлич. литые, пластмассовые или резиновые прессованные либо гальваностереотипы. Печатание с плоских форм В. п. производится на тигельнь^ или т. н. плоскопечатных, машинах, с круглых форм - на листовых или ролевых ротационных машинах. Существует также способ типоофсетной печати, при к-ром изображение с печатной формы передаётся сначала на резиновое полотно (цилиндр, облицованный резиной), а с него на бумагу. Совр. ротационные печатные машины В. п. позволяют печатать иллюстрированные многокрасочные газеты, журналы, книги и др. на непрерывном бумажном полотне шир. до 2 л со скоростью от 3 до 15 м/сек.

Л. Л. Козаровицкий.

ВЫСОКИЕ ПЛАТО, межгорные плато и равнины в Атласских горах (см. Атлас), в Марокко и Алжире. Расположены между хребтами Тель-Атлас на С. и Сахарский Атлас на Ю. Герцинское складчатое основание В. п. перекрывает чехол осадочных мезозойских и кайнозойских отложений. Выс. до 1100-1200 м на 3., до 700-800 м на В. На поверхности - неглубокие обширные впадины с солёными озёрами - шоттами (Шотт-эш-Шерги, Шотт-эль-Ходна и др.), к к-рым направляются долины вади. Осадков от 200 до 400 мм в год. Большая часть В. п.- область внутр. эпизодич. стока. Ксерофитные дернинные злаки и редкие кустарники и деревья; серо-коричневые почвы. Животноводство. Орошаемое земледелие.

ВЫСОКИЕ РАВНИНЫ (High Plains), плато в центр, части США. Занимает большую (среднюю) часть Великих равнин, между р. Уайт-Ривер (приток р. Миссури) и р. Канейдиан (приток р. Арканзас). От соседних участков Великих равнин отделено уступами. Сложено известняками и песчаниками палеозойского возраста, перекрытыми лёссовидными суглинками, реже - песками. Поверхность плоская, понижается с 3. на В. от 1700 до 500 м, прорезана долинами рек Платт, Арканзас и др., вблизи к-рых глубоко расчленена густой овражной и речной сетью. Разнотравно-ковыльная, сильно изменённая выпасом скота степь на каштановых почвах. Район экстенсивного пастбищного скотоводства. В долинах рек - орошаемое земледелие.

ВЫСОКИЙ, посёлок гор. типа в Харьковском р-не Харьковской обл. УССР, в 15 км к Ю.-З. от Харькова. Ж.-д. ст. Октябрьская. 16 тыс. жит. (1969). Население работает на предприятиях Харькова.

ВЫСОКИЙ АТЛАС, горная цепь в системе Атласских гор (см. Атлас) на С.-З. Африки, в Марокко. Протяжённость ок. 700 км (от мыса Гир на Атлантич. ок. до вост. границ страны). Зап. часть В. А.- преим. известняковые плато, окружающие центр, массив из гранитов и сланцев выс. 3-4 тыс. м (г. Тубкаль, 4165 м). К В. высоты резко снижаются (до 1500 м). Вост. часть В. А.- короткие мергелисто-известняковые хребты, разбитые сбросами и отделённые друг от друга депрессиями. На сев.-зап. наветренных влажных склонах гор до выс. 1500 м- леса из вечнозелёных жестколистных оливкового и рожкового деревьев, олеандра с примесью туи, до 1800 м - из кам. дуба, до 3000 м - заросли можжевельников, выше - остепнённые луга; на более сухих юж. и вост. склонах - заросли берберской "туи" (сандарака) и можжевельника.

ВЫСОКИЙ ТАУЭРН (Hohe Tauern), горный хребет в Вост. Альпах, в Австрии. Простирается с 3. на В. более чем на 120 км. Состоит из неск. массивов выс. до 3797 м (г. Гросглокнер) с альп. формами рельефа. В зап. части многочисленны каровые и долинные ледники. С сев. склонов В. Т. берут начало многие прав, притоки р. Зальцах (басс. р. Инн), с южных - лев. притоки р. Драва. Осевая зона В. Т. сложена древними гранитами и гнейсами. До выс. 1800-2000 м - хвойные леса, выше - заросли кустарников и луга. Через В. Т. на выс. ок. 1200 м проложен туннель ж. д. Зальцбург - Клагенфурт.

ВЫСОКИХ НАПРЯЖЕНИЙ ТЕХНИКА, раздел электротехники, охватывающий изучение и применение электрич. явлений, протекающих в различных средах при высоких напряжениях. Высоким считается напряжение 250 в и выше относительно земли. Экономически целесообразно строить мощные электрич. станции вблизи мест добычи топлива или на больших реках и получаемую электрич. энергию передавать (напр., по проводам) в пром. районы, иногда значительно удалённые от осн. источников энергии. Передача больших электрич. мощностей на далёкие расстояния при низком напряжении из за потерь практически невозможна, поэтому с развитием электрификации растут и рабочие (номинальные) напряжения электрич. сетей. В СССР особенно быстро номинальные напряжения росли в период осуществления ГОЭЛРО и в сер. 50-х гг. (рис. 1), при создании Единой высоковольтной сети (ЕВС) Европ. части страны.

[0540-18.jpg]

Рис. 1. Графики роста наивысшего номинального напряжения (в кв) электрических сетей СССР: 1 - линии переменного тока; 2 - линии постоянного тока.

В развитии В. н. т. большую роль сыграли русские и сов. учёные. В России первая лаборатория высокого напряжения была создана проф. М. А. Шателеном при Петерб. политехнич. ин-те в 1911. В Сов. Союзе работают десятки крупных лабораторий при н.-и. ин-тах, заводах и вузах, изучающих проблемы В. н. т. Большие работы в этой области проведены Б. И. Угримовым, А. А. Смуровым, А. А. Горевым, А. А. Чернышёвым, Л. И. Сиротинским, В. М. Хрущевым и руководимыми ими науч. коллективами, а также науч. школой, возглавлявшейся акад. А. Ф. Иоффе. Издано большое количество монографий и учебников по В. н. т.

Осн. проблемой В. н. т. является создание надёжной высоковольтной изоляции, к-рая имела бы минимальные конструктивные размеры и малую стоимость. Каждая изоляционная конструкция обладает определёнными длительной и кратковременной электрич. прочностями, значения к-рых определяют габариты и стоимость изоляции (см. Изоляция электрическая). Кратковременная электрич. прочность изоляции характеризует её способность выдерживать кратковременные повышения напряжения (перенапряжения), возникающие в электрич. системах при различных переходных процессах (напр., при включении или отключении отд. элементов системы, при коротких замыканиях и т. д.) либо при ударах молнии в линии электропередачи или другие токоведущие части. Перенапряжения первого вида называются внутренними и обычно продолжаются сотые доли сек.

Перенапряжения второго вида называются грозовыми, их длительность не превышает десятитысячных долей сек.

Наиболее распространённым диэлектриком в электрич. системах служит обычный воздух, окружающий провода линий электропередачи и др. элементы внеш. изоляции электрич. систем (напр., опорные, проходные и подвесные изоляторы). Удельная электрич. прочность воздуха (отношение пробивного напряжения к расстоянию между электродами) резко падает с увеличением расстояния между электродами (рис. 2), поэтому габариты линий электропередачи должны расти быстрее, чем растёт номинальное напряжение. Это обстоятельство может положить предел увеличению рабочих напряжений возд. линий электропередачи, к-рый, по-видимому, составит ок. 1500 кв по отношению к земле (это соответствует номинальному напряжению 2000 кв для трёхфазных линий перем. тока и 3000 кв дня линий постоянного тока). При таком напряжении по каждой линии можно передать электрич. мощность неск. Гвт на расстояние порядка 1000 км и более. Дальнейшее повышение передаваемой мощности будет, по-видимому, достигнуто путём применения линий электропередачи нового типа, среди к-рых наиболее перспективны газонаполненные кабели, сверхпроводящие, или криогенные, кабельные линии, а также передача электрич. энергии по волноводам при частотах порядка десятков Ггц.

[0540-19.jpg]
Рис. 2. Удельная электрическая прочность (кв/см) промежутка "провод- плоскость" в воздухе при емпературе 20оС и давлении 760 мм рт. ст.

Электрич. прочность воздуха сильно зависит от продолжительности воздействия только при малых отрезках времени (меньше 100 мксек), поэтому она приблизительно одинакова при грозовых и внутр. перенапряжениях. Это положение справедливо для сухих и чистых изоляторов, находящихся в возд. среде. Если же поверхность изоляторов загрязнена и увлажнена дождём или туманом, то электрич. прочность изолятора снижается и зависит от длительности воздействия напряжения. Поэтому воздушные промежутки на линиях электропередачи (напр., расстояние между проводом и землёй или элементами опоры) определяются только перенапряжениями, а количество и тип изоляторов, на к-рых подвешиваются провода,-также и рабочим напряжением. Величина перенапряжений, степень загрязнения изоляторов, сила ветра, к-рый отклоняет провода от нормального положения и приближает их к опоре, меняются в широких пределах. Поэтому выбор изоляции для линий электропередачи осуществляется с применением методов математич. статистики.

Внутр. изоляцию электрич. машин и аппаратов (напр., изоляцию обмоток трансформатора относительно заземлённого сердечника или корпуса) обычно изготовляют с применением комбинации различных изоляц. материалов. Наиболее распространено сочетание изоляционного минерального масла и изделий из целлюлозы (бумага, электрокартон, прессшпан, бакелит и др.). При конструировании изоляторов принимают меры для выравнивания электрич. поля путём, напр., применения электродов закруглённой формы, использования различия в величинах диэлектрич. проницаемости изоляционных материалов, принудит, распределения напряжения по объёму изоляции. Кратковременная удельная электрич. прочность внутр. изоляции, так же как и воздуха, уменьшается при увеличении расстояния между электродами, поэтому обычно выгодно разбивать изоляцию на ряд последовательно соединённых относительно тонких слоев. Длительная электрич. прочность внутр. изоляции определяет срок её службы при нормальных эксплуатац. условиях. Основными факторами, приводящими к постепенному ухудшению первоначальных свойств изоляции, являются механические воздействия (например, вследствие электродинамич. усилий между токоведущими частями при коротких замыканиях), повышение температуры, увлажнение и загрязнение, воздействие перенапряжений. Особое место занимают частичные разряды в образующихся в толще изоляции газовых включениях, к-рые могут оказаться одной из осн. причин старения изоляции. Под нормальными эксплуатац. условиями понимается ограничение перечисл. выше факторов до определённого уровня, обеспечивающего расчётный срок службы изоляции. Для увеличения срока службы изоляции большое значение имеет система профилактич. испытаний изоляции, во время к-рых путём измерения ряда характерных величин (сопротивление утечки, тангенс угла диэлектрич. потерь, ёмкость при двух частотах или при двух темп-рах, интенсивность частичных разрядов и др.) можно оценить состояние изоляции и своевременно определять сроки и характер необходимого ремонта. В систему профилактич. испытаний входит также испытание повышенным напряжением, обязательное после возвращения изоляции из ремонта.

Необходимые габариты внутр. изоляции определяются уровнем воздействующих на неё грозовых и внутр. перенапряжений, т. е. её кратковременной электрич. прочностью, к-рая для установок с номинальным напряжением 220-500 кв приблизительно в 2,5-3 раза превышает максимальное рабочее напряжение. Так как перенапряжения могут иметь и большую кратность, одна из осн. задач В. н. т.- исследование перенапряжений и ограничение их амплитуды, обычно достигаемое применением грозовых и коммутационных вентильных разрядников в сочетании с другими мероприятиями. В системах сверхвысокого напряжения (1200 кв и выше) перенапряжения будут ограничивать до значений, в 1,5-1,8 раза превышающих номинальное напряжение. При этом на габариты изоляции осн. влияние будет оказывать её длительная прочность, т. е. постепенное старение изоляции под действием рабочего напряжения и перечисл. выше внеш. воздействий. В этой связи большой интерес представляет возможность применения в качестве внутр. изоляции сжатого газа, обладающего минимальными диэлектрич. потерями и в значительно меньшей степени подверженного старению. Наиболее перспективными изоляционными газами считаются элегаз (шестифтористая сера SF6) и фреон (дихлордифторметан CC12F2), электрич. прочность к-рых приблизительно в 2,5 раза больше, чем у воздуха. При давлении в неск. десятых Мн/м2 (1 Мн/м2=10 кгс/см2) кратковременная электрич. прочность фреона и элегаза не ниже, чем у таких традиционных диэлектриков, как фарфор и трансформаторное масло (рис. 3). Созданы распределит, устройства напряжением до 220 кв, в к-рых всё оборудование работает в атмосфере элегаза при давлении 0,3-0,4 Мн/м2.

[0540-20.jpg]

Рис. 3. Пробивное напряжение в однородном поле для различных диэлектриков: 1 - фарфор; 2 - трансформаторное масло; 3 - элегаз (0,1 Мн/м1); 4 - элегаз (0,7 Мн/м2).

Такие устройства очень хорошо сочетаются с газонаполненными кабельными линиями, применение их перспективно, особенно в густонаселённых районах.

Другая важнейшая проблема В. н. т.- исследование коронного разряда на проводах воздушных линий электропередачи, к-рый сопровождается потерями энергии и высокочастотным излучением, создающим помехи радиоприёму вблизи линии. Т. к. интенсивность коронного разряда определяется величиной напряжённости электрич. поля на поверхности проводов, потери на корону и радиопомехи уменьшаются при увеличении диаметра провода. С этой же целью часто применяют вместо одиночных т. н. расщеплённые провода. На линиях с напряжением от 330 до 750 кв применяют расщеплённые провода, состоящие соответственно из 2, 3 и 4 отдельных проводников, находящихся друг от друга на расстоянии до 50 см. На линиях 1100 - 1200 кв переменного тока, по-видимому, будут применять расщеплённые провода, состоящие аз 6 или 8 отд. проводников, разнесённых на значит, расстояние для уменьшения волнового сопротивления линии и увеличения её пропускной способности.

При постоянном токе потери на корону и уровень радиопомех существенно ниже, чем при переменном, и в этом заключается одно из преимуществ линий передачи постоянного тока. Однако осн. их преимущество- в возможности связи несинхронно работающих электрич. систем, благодаря чему отпадает проблема устойчивости; дальность передачи электроэнергии при постоянном напряжении ограничивается только экономич. соображениями. Поэтому первая в Сов. Союзе сверхдальняя линия электропередачи Экибастуз - Центр проектируется на постоянном токе напряжением 1500 кв (±750 кв относительно земли). Главная трудность освоения электропередачи постоянного тока связана с созданием выпрямителей и инверторов, при изготовлении к-рых применяют мощные управляемые полупроводниковые приборы или дуговые вентили. В перспективе линии постоянного тока создадут основной костяк Единой высоковольтной сети СССР.

Важным разделом В. н. т. является разработка установок высокого напряжения, предназначенных для испытания изоляции и для других целей. В качестве источника перем. напряжения пром. частоты (50 гц) служат испытательные трансформаторы, часто соединяемые в каскады. Каскадные трансформаторы изготовляют на напряжение до 3000 кв. Высокое постоянное напряжение (до 6000 кв) получают с помощью электростатистических генераторов или последовательно соединённых выпрямителей, для к-рых обычно применяют высоковольтные полупроводниковые диоды. Для имитации грозовых перенапряжений разработаны генераторы импульсных напряжений (ГИН), генерирующие импульсные напряжения с амплитудой до 10 Мв. В 60-е гг. широкое распространение получили также генераторы волн внутр. перенапряжений (ГВП), к-рые дают импульс напряжения длительностью до 0,01 сек. Генераторы импульсных токов (ГИТ) при умеренном напряжении (до 200 кв) и амплитуде импульсов тока до неск. миллионов ампер вначале применялись для испытания заземлителей и грозозащитных разрядников. В дальнейшем область применения ГИТ (их часто называют ёмкостными накопителями энергии) значительно расширилась; их применяют при магнитно-импульсной обработке металлов, в установках, использующих электрогидравлич. эффект, в контурах накачки лазеров, для получения высокотемпературной плазмы и др. целей. Разновидность ГИТ (т. н. контур Горева) применяют для испытания выключателей на отключающую способность. Высокие напряжения повышенной частоты получают на ламповых генераторах или трансформаторах Тесла.

Создание испытательных установок высокого напряжения потребовало также разработки специальной измерит, аппаратуры. Простейшим прибором для измерения высоких напряжений служит шаровой разрядник. Высокие напряжения измеряют также с помощью электростатич. и роторных (вращающихся) вольтметров, а импульсные напряжения - электронными осциллографами с дели