БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

амолёты.

Сов. ВДВ зародились в начале 30-х гг. 20 в. Впервые в истории воен. дела весной 1929 в осаждённый басмачами г. Гарм была высажена с воздуха группа вооруж. красноармейцев, к-рая при поддержке местных жителей разгромила банду басмачей, вторгшуюся из-за границы на терр. Таджикистана. 2 авг. 1930 на войсковом учении Моск. воен. округа под Воронежем на парашютах было выброшено небольшое десантное подразделение. Эту дату принято считать днём рождения ВДВ. В 1932 Реввоенсовет. СССР вынес постановление о формировании авиадесантных частей в ряде воен. округов, положившее начало массовому развёртыванию ВДВ. В 1934 в манёврах Красной Армии принимали участие 600 парашютистов, в 1935 на Киевских и Белорусских учениях были десантированы 3 тыс. парашютистов и высажены из самолётов 8200 чел. с артиллерией, лёгкими танками и др. боевой техникой. К нач. 1941 на базе имевшихся воздушнодесантных бригад были развёрнуты воздушнодесантные корпуса численностью св. 10 тыс. чел. каждый. К этому времени ВДВ оформились в род войск. Наряду с практич. освоением переброски крупных сил по воздуху разрабатывалась теория боевого применения ВДВ, нашедшая отражение в Полевом уставе 1940.

В первые месяцы Великой Отечеств, войны 1941-45 сов. командованием возд. десанты применялись под Киевом, в р-не Одессы, на Керченском п-ове, а позднее в битве под Москвой. В янв.- февр. 1942 в р-не Вязьмы был высажен возд. десант в составе 4-го возд.-десантного корпуса. Крупный возд. десант высадился в сент. 1943 в р-не г. Черкассы. В войне с империалистич. Японией возд. десанты применялись в р-нах Чанчунь, Мукден, Дайрен. Сов. пр-во высоко оценило массовый героизм десантников. Десятки тысяч солдат, сержантов, офицеров ВДВ награждены орденами и медалями, а 126 чел. удостоены звания Героя Советского Союза.

Во 2-й мировой войне 1939-45 ВДВ применялись фаш. Германией при вторжении в Голландию, Бельгию, Норвегию, для захвата о. Крит (1941); англо-амер. армиями - при высадке войск в Нормандии, в р-не Арнем, при форсировании р. Рейн и др. В послевоен. период армия США применяла возд. десанты в войне с Кореей (1951), англ, и франц. армии - в агрессии против Египта (1956), израильская армия при нападении на араб, страны (1967).

Лит.: Лисов И. И., Десантники, М., 1968; Софронов Г. П., Воздушные десанты во второй мировой войне, М., 1962 Гове А., Внимание, парашютисты 1, пер с нем., М., 1957; Андрухов И. И. Георгиев М. Р., Ефимов К. Е-Воздушно десантные войска НАТО, М. 1970. П. Ф. Павленко

ВОЗДУШНОЕ ОТОПЛЕНИЕ, система отопления помещений горячим воздухом. В. о. включает: воздухоподогреватели, в которых воздух может нагреваться горячей водой, паром (в калориферах), теплом, выделяющимся от сгорания различных видов топлива (в огне воздухоподогревателях), а также электричеством (в электровоздухоподогревателях); воздуховоды, подводящие воздух в отапливаемые помещения; воздухоподающие и воздухозаборные решётки, через к-рые воздух подаётся в отапливаемые помещения и забирается для подачи к воздухоподогревателю; запорно-регулирующие клапаны в воздуховодах. При расположении воздухоподогревателя непосредственно в отапливаемом помещении воздуховоды, решётки и клапаны могут не устраиваться.Различают В. о. рециркуляционное, при к-ром весь подаваемый к воздухоподогревателю воздух забирается из отапливаемого им помещения, и совмещённое с вентиляцие и (рис. 1), когда подача воздуха осуществляется частично из отапливаемого яомещения, а частично снаружи, причём соотношение объёмов рециркуляционного и наружного воздуха может регулироваться в широких пределах. Устраиваются также системы В. о., совмещённые с вентиляцией, работающие только на наружном воздухе (без рециркуляции и рециркуляц. каналов), их иногда наз. прямоточными. Такие системы применяются, напр., в жилых зданиях, где одним воздухоподогревателем обслуживаются неск. квартир (в данном случае устройство рециркуляции привело бы к нежелательному поступлению воздуха из одной квартиры в другую). От рециркуляции отказываются также при устройстве В. о. в производств, помещениях, технологич. процесс в к-рых сопровождается выделением вредных газов или пыли. Перемещение воздуха в системах В. о. (как с рециркуляцией, так и в совмещённых с вентиляцией) может быть естественное - за счёт разности темп-р и плотности воздуха до воздухоподогревателя и после него, а также с механич. побуждением. В последнем случае устанавливается электрич. вентилятор.

Осн. преимущество В. о. по сравнению с др. видами центр, отопления - уменьшенный расход металла благодаря тому, что для устройства В. о. не применяются отопит, приборы и трубы, как, напр., при водяном отоплении или паровом отоплении. При совмещении В. о. с вентиляцией одновременно решается вопрос воздухообмена в помещениях, а иногда, при предварит, обработке подаваемого в помещение воздуха (увлажнение, охлаждение, осушка и пр.), и кондиционирования воздуха. В пром. цехах, залах обществ, зданий, а также в зданиях с большим количеством комнат (в к-рых строит, конструкции позволяют использовать под каналы имеющиеся пустоты) устройство В. о. может быть значительно проще, чем др. видов центр, отопления. В СССР В. о. широко применяется в пром. цехах, оно осуществляется обычно с помощью агрегатов, устанавливаемых в отапливаемых помещениях (рис. 2). Теплопроизводительность агрегатов В. о. для пром. цехов - от 5,8-11,6 вт до 5,8 Мвт (от 5- 10 до 500 тыс. ккал/ч).



Рис. 1. Схема воздушного отопления, совмещённого с вентиляцией: / - отапливаемое помещение; 2-воздухоподогреватель; 3 - воздуховод, подающий горячий воздух в отапливаемое помещение; 4 - воздуховод, подающий рециркуляционный воздух к воздухоподогревателю; 5 - воздуховод, подающий наружный воздух к воздухоподогревателю; 6-воздухозаборная решётка наружного воздуха; 7 - воздухозаборная решётка рециркуляционного воздуха; 8 - воздухолодающая решётка; 9 - дроссели клапана; 10 - вентилятор; 11 - вытяжная вентиляция.


Рис. 2. Агрегаты воздушного отопления: а-устанавливаемые на полу; б-укрепляемые на строительных конструкциях (колоннах, стенах и т. п.); 1 - вентилятор; 2- воздухоподогреватель (калорифер); 3 - всасывающее отверстие; 4 - нагнетательное отверстие.

В. о., совмещённое с вентиляцией (без рециркуляции), начали применять также в школах и в жилых домах высотой 4- 5 и более этажей. В США и нек-рых др. странах В. о. используется для одноквартирных жилых домов.

Лит.: Отопление и вентиляция, 2 изд., ч. 1, М., 1965. И.Ф.Ливчак.

ВОЗДУШНОЕ ПРАВО, совокупность правовых норм, регулирующих порядок использования возд. пространства и возд. передвижений. Существует В. п. международное и национальное (внутригосударственное). Междунар. В. п.- совокупность международноправовых норм, регулирующих права и обязанности ЕОС-В при использовании ими возд. пространства для междунар. возд. передвижений, исследовательских и иных целей. Нац. (внутригос.) В- п. представляет собой совокупность внутригос. правовых норм относительно использования возд. пространства данного гос-ва и регулирования возд. передвижений в нац. воздушной территории. Исходным положением как международного, так и национального В. п. является признание полного и исключительного суверенитета каждого гос-ва в отношении возд. пространства над его территорией, включая территориальные воды (напр., ст. 1 Воздушного кодекса СССР). Актом по вопросам междунар. В. п. является Чикагская конвенция 1944, в к-рой участвует 119 гос-в (1970); на основе этой конвенции создана Междунар. организация гражд. авиации (УСАО). СССР официально не присоединился к Чикагской конвенции, но объявил о своём намерении вступить в будущем в число её участников. Отд. вопросы междунар. В. п. регулируются Варшавской конвенцией 1929 об унификации нек-рых правил, касающихся междунар. возд. перевозок (СССР - участник этой конвенции), Чикагским соглашением о междунар. транзитном возд. сообщении 1944 (СССР не участвует), Римской конвенцией от 7 окт. 1952 и др. многосторонними актами, а также спец. двусторонними соглашениями о возд. сообщении.

Осн. вопросы В. п. СССР регламентируются действующим Воздушным кодексом СССР, отд. положения содержатся и в др. законедат. актах и постановлениях правительства СССР. Согласно сов. законодательству, под возд. пространством СССР, в к-ром Сов. гос-во осуществляет полный и исключит, суверенитет, понимается пространство над всей сухопутной и водной территорией СССР, включая терр. воды. Возд. суда подлежат обязат. регистрации в Гос. реестре СССР; в состав экипажей возд. судов СССР могут входить лишь граждане СССР. Полёт, при к-ром возд. судно пересекает гос. границы СССР и др. гос-ва, считается междунар. полётом. Полёты иностр. возд. судов в возд. пространстве СССР могут производиться только по установленным междунар. возд. трассам в соответствии с заключёнными междунар. соглашениями о возд. сообщении или по спец. разрешениям Мин-ва гражд. авиации СССР на разовые полёты. Возд. судно, совершившее без разрешения влёт в возд. пространство СССР, признаётся возд. судном-нарушителем. На возд. суда, их экипажи, пассажиров, прибывающих в СССР или отбывающих из СССР, распространяется действие паспортных, таможенных, валютных, сан. и др. правил, действующих в СССР.

Нормами В. п. СССР регламентированы также правовое положение возд. судов, порядок деятельности аэродромов и аэропортов, правила осуществления возд. (в т. ч. и междунар.) перевозок пассажиров, багажа и грузов, ответственность перевозчика и др. лиц при возд. передвижениях и др. вопросы.

Лит.: Курс международного права, т. 3, М., 1967, гл. X, с. 294-336; Верещагин А. Н., Международное воздушное право, М., 1966; Шоукросс и Бьюмонт, Воздушное право, сокр. пер. с англ., М., 1957. Н. В. Миронов.

ВОЗДУШНОЙ СКОРОСТИ УКАЗАТЕЛЬ, авиационный прибор для измерения скорости полёта летат. аппарата (самолёта, вертолёта) относительно возд. среды. Определение возд. скорости V необходимо для пилотирования самолёта, т. к. подъёмная сила крыла пропорциональна квадрату возд. скорости, а также для навигац. целей, напр, для вычисления пройденного самолётом пути и др.

В. с. у. состоит из 3 осн. частей: приёмника возд. давления, трубопровода и стрелочного указателя. Приёмник воспринимает статич. давление рст и динамич. (полное) давление рд. Их разность равна скоростному напору, т. е. 0,5 р V2, где р - плотность воздуха. Т. к. деформация чувствительного элемента - манометрической (анероидной) коробки - В. с. у. происходит под действием разности давлений, то в соответствии с данной зависимостью шкалу градуируют в единицах воздушной скорости. При измерении скоростей полёта свыше 800 км/ч вносится поправка, учитывающая сжимаемость воздуха.

Показания прибора прямо пропорциональны значению р, зависящему от давления р и темп-ры Т окружающего воздуха. Если их полагать неизменными (р = 101 325 н/м2 = 760 мм рт. ст. и Т = 288 К), то прибор будет указателем индикаторной (приборной) возд. скорости. Если же в показания прибора вводить коррекцию на их изменение с высотой полёта (это реализуется автоматически нек-рым усложнением кинематич. схемы механич. передачи от чувствит. элемента к стрелке указателя), то прибор будет указателем истинной возд. скорости. Практически применяют двухстрелочный (комбинированный) В. с. у., на к-ром одна стрелка даёт показания приборной, а другая - истинной возд. скорости. А. Л. Горелик.

ВОЗДУШНО-КОСМИЧЕСКИЙ САМОЛЁТ (ВКС), новый вид пилотируемого реактивного летат. аппарата (в частности, крылатого) с несущей поверхностью, предназначенный для полёта в атмосфере и в космич. пространстве, сочетающий свойства самолёта и космического летательного аппарата. Рассчитан на многократное использование, должен взлетать с аэродромов, разгоняться до орбитальной скорости, совершать полёт в космич. пространстве и возвращаться на землю с посадкой на аэродром. Одно из осн. назначений ВКС - снабжение обитаемых орбитальных станций и смена их экипажей. За счёт многоразового использования ВКС предполагается обеспечить большую его эффективность и экономичность в сравнении с совр. ракетами-носителями. В США рассматривается возможность применения ВКС для воен. целей. В качестве силовой установки ВКС предполагается сочетание воздушно-реактивного двигателя - для полёта в пределах атмосферы, и жидкостного ракетного двигателя - для полёта в космич. пространстве (см. Воздушно-ракетный двигатель). Изучается также возможность применения ядерных силовых установок. Проводится исследование ряда сложных проблем, связанных с созданием ВКС, и разрабатываются (1970) отд. проекты ВКС (напр., "Астро" - в США, "Мустард" - в Великобритании) с начальной массой до неск. сотен т.

ВОЗДУШНО-РАКЕТНЫЙ ДВИГАТЕЛЬ, комбинированный реактивный двигатель, в к-ром осуществляются циклы воздушно-реактивного двигателя и ракетного двигателя. Возможно использование в космонавтике для воздушно-космических самолётов. Иногда так наз. двигатель, в к-ром применяется в качестве окислителя сжиженный в полёте атм. воздух; такой гипотетич. двигатель предполагается для длит, полётов в верхних слоях атмосферы.

ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ (ВРД), реактивный двигатель, в к-ром для сжигания горючего используется кислород, содержащийся в атм. воздухе. ВРД приводит в движение летат. аппараты (самолёты, вертолёты, самолёты-снаряды). Сила тяги в ВРД возникает в результате истечения рабочих газов из реактивного сопла. Для получения большой скорости истечения газов из сопла воздух, поступающий в камеру сгорания ВРД, подвергается сжатию. В зависимости от способа сжатия воздуха ВРД делятся на турбокомпрессорные (ТРД), пульсирующие (ПуВРД) и прямоточные (ПВРД).

Турбокомпрессорные ВРД (ТРД) имеют компрессор с приводом от газовой турбины, что позволяет независимо от скорости полёта создавать сжатие воздуха, обеспечивающее большие скорости истечения газов из выходного (реактивного) сопла и большую силу тяги. ТРД широко применяется на самолётах, вертолётах, беспилотных самолётах-снарядах. ТРД можно устанавливать на катерах, гоночных автомобилях, аппаратах на воздушной подушке и др. (см. Турбокомпрессорный двигатель).

Пульсирующий ВРД (ПуВРД) имеет (рис. 1) входной диффузор (для сжатия воздуха под влиянием кинетич. энергии набегающего потока), отделённый от камеры сгорания входными клапанами, и длинное цилиндрич. выходное сопло. Горючее и воздух подаются в камеру сгорания периодически. При сгорании смеси давление в камере повышается, т. к. клапаны на входе автоматически закрываются, а столб газов в длинном сопле обладает инерцией. Газы под давлением с большой скоростью вытекают из сопла, создавая силу тяги. К концу процесса истечения давление в камере сгорания падает ниже атмосферного, клапаны автоматически открываются и в камеру поступает свежий воздух, впрыски вается топливо; цикл работы двигателя повторяется. ПуВРД способен создавать тягу на месте и при небольших скоростях полёта. Когда клапаны закрыты, ПуВРД имеет большое аэродинамич. сопротив ление по сравнению с др. типами ВРД небольшую тягу и используется лишь для аппаратов со скоростью полёта меньше звуковой.


Рис. 1. Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 - воздух; 2 - горючее; 3 - клапанная решётка; 4 - форсунки; 5 - свеча; 6 - камера сгорания; 7 - выходное (реактивное) сопло.


Рис. 2. Схема прямоточного воздушно-реактивного двигателя (ПВРД): / - воздух; 2 - диффузор; 3 - впрыск горючего; 4 - стабилизатор пламени; 5 - камера сгорания; 6 - сопло; 7 - истечение газов.


Рис. 3. Области применения двигателей различных типов в зависимости от скорости полёта: Н - высота полёта; М - число Маха; 1 - турбореактивные двигатели; 2 - турбореактивные двигатели с форсажной камерой; 3 - прямоточные воздушно-реактивные двигатели.

В прямоточном ВРД (ПВРД) во входном диффузоре (рис. 2) воздух сжимается за счёт кинетич. энергии набегающего потока воздуха. Процесс работы непрерывен, поэтому стартовая тяга у ПВРД отсутствует. При скоростях полёта ниже половины скорости звука (ниже 500 км/ч) повышение давления воздуха в диффузоре незначительно, поэтому получаемая сила тяги мала. В связи с этим при скоростях полёта, соответствующих М<0,5 (где М - число Маха, см. М-число), ПВРД не применяется; при М = 3 (скорость полёта ок. 3000 км/ч) давление в камере сгорания повышается примерно в 25 раз. ПВРД могут работать как на химическом (керосин, бензин и др.), так и на атомном горючем. При установке ПВРД на самолётах с меняющейся скоростью полёта, напр, на истребителях-перехватчиках, входное устройство должно иметь регулируемые размеры и изменяемую форму для наилучшего использования скоростного напора набегающего потока воздуха. Реактивное сопло также должно иметь регулируемые размеры и форму. Взлёт самолёта-перехватчика с ПВРД производится при помощи ракетных двигателей (на жидком или твёрдом топливе) и только после достижения скорости полёта, при к-рой воздух в диффузоре имеет достаточно высокое давление, начинает работу ПВРД. Осн. преимущества ПВРД: способность работать на значительно больших скоростях и высотах полёта, чем ТРД; большая экономичность по сравнению с жидкостными ракетными двигателями (ЖРД), т. к. в ПВРД используется кислород воздуха, а в ЖРД кислород вводится в виде одного из компонентов топлива, транспортируемого вместе с двигателем; отсутствие движущихся частей и простота конструкции. Главные недостатки ПВРД: отсутствие статич. (стартовой) тяги, что требует принудит, старта; малая экономичность при дозвуковых скоростях полёта. Применение ПВРД наиболее эффективно для полёта с большими сверхзвуковыми скоростями. ПВРД со сверхзвуковой скоростью сгорания топлива (в камере сгорания) наз. гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). Его применение целесообразно на летат. аппаратах при скоростях полёта, соответствующих М = 5-6. Области применения различных типов двигателей показаны на рис. 3.

Лит.: Бондарюк М. М., Ильяшенко С. М., Прямоточные воздушно-реактивные двигатели, М., 1958.

Г. С. Скубачевский.

ВОЗДУШНО-ТЕПЛОВОЙ ОБОГРЕВ СЕМЯН, один из приёмов подготовки семян к посеву; заключается в воздействии на семена тёплого атм. или искусственно подогретого воздуха (при вентиляции). В.-т. о. с. повышает пористость и воздухопроницаемость семенных оболочек, уси