БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

кспериментальных животных (или растений), а в культурах тканей - поражением клеток, т. н. цитопатич. действием, к-рое распознаётся при микроскопич. или цитохимич. исследовании. При В. и. применяется "метод бляшек" - наблюдение дефектов клеточного слоя, вызванных разрушением или поражением клеток в очагах накопления вируса. Вирионы, имеющие характерное строение у разных вирусов, могут быть идентифицированы при электронной микроскопии. Дал-ьнейшая идентификация вирусов основана на комплексном применении физич., химич. и иммунологич. методов. Так, вирусы различаются по чувствительности к эфиру, что связано с наличием или отсутствием в их оболочках липидов. Тип нуклеиновой к-ты вируса (РНК и ДНК) может быть определён химич. или цитохимич. методами. Для идентификации вирусных белков используются серологич. реакции (см. Серология) с сыворотками, полученными путём иммунизации животных соответств. вирусами. Эти реакции дают возможность распознавать не только виды вирусов, но и их разновидности. Серологич. методы исследования позволяют по наличию антител в крови диагностировать вирусную инфекцию у человека и высших животных и изучать циркуляцию среди них вирусов. Для выявления латентных (скрытых) вирусов человека, животных, растений и бактерий применяют специальные методы исследования.

Лит.: ШубладзеА.К.и Гаидамович С. Я., Краткий курс практической вирусологии, М., 1949; Жданов В. М. и Гайдамович С. Я., Вирусология, М., 1966. В. М. Жданов.

ВИРУСОЛОГИЯ (от вирусы и ...логия), вирология, инфрамикробиология, наука о вирусах - субмикроскопических внутриклеточных паразитах; только в сер. 20 в. выделилась в самостоят, дисциплину. Первоначально В. человека, животных и бактерий развивалась в рамках микробиологии, а В. высших растений - как раздел фитопатологии. В. занимает важное место среди медико-биологич. наук, т. к. вирусные болезни широко распространены у человека, животных и растений; кроме того, вирусы служат моделями, на к-рых изучаются осн. проблемы генетики и молекулярной биологии. Первые монографии по вирусным болезням животных опубликованы М. Риверсом (Лондон, 1928), Н. Ф. Гамалеей (Москва, 1930), по вирусным болезням растений - В. Л. Рыжковым (Москва, 1933), К. Смитом (Лондон, 1933). Первая лаборатория (по вирусным болезням растений) организована в 1930 при Укр. ин-те защиты растений; в 1932 лаборатории по вирусным болезням человека появились в ряде ин-тов мед. микробиологии. Ин-т вирусологии им. Д. И. Ивановского существует в Москве с 1946. Первая конференция по вирусным болезням растений состоялась в марте 1935 в Харькове, первая конференция по ультрамикробам, фильтрующимся вирусам и бактериофагу - в декабре того же года в Москве. В 1966 на 9-м Междунар. конгрессе по микробиологии впервые избран Междунар. комитет по номенклатуре вирусов; в 1968 состоялся 1-й Междунар. конгресс по В. в Хельсинки.

В методич. отношении В. существенно отличается от микробиологии, т. к. вирусы не удаётся культивировать на искусств, питат. средах. Для опытов с вирусами приходится использовать чувствительных к ним животных и растения, куриные эмбрионы (1932) и изолированные ткани (с 1913 и особенно с 1925). Успехи В. зависели прежде всего от разработки удобного метода культивирования вирусов. Так, изучение вируса гриппа продвинулось вперёд, когда определили, что к этому вирусу чувствительны хорьки (1933) и белые мыши (1934). В изучении вирусов полиомиелита и кори, а также в создании предохранит, вакцин против этих болезней решающее значение имело культивирование вирусов в изолированных тканях обезьян и человека. Для количеств, учёта вируса и динамики его размножения применяют различные методы титрования. Важнейшие из них основаны на том, что вирус, размножаясь в клетках, вызывает видимые простым глазом поражения. Бактериальные вирусы (бактериофаги) титруют по числу стерильных пятен (Ф. Д'Эрелль, 1917), вирусы растений - по числу некрозов на заражённом вирусом листе (Ф. Холмс, 1929), вирусы животных и человека - на однослойных культурах тканей (Р. Дульбекко, 1952). Впервые хим. путём был очищен У. Стэнли (1935) вирус мозаичной болезни табака. Создание ультрацентрифуг облегчило концентрацию вирусов и определение массы вирусных частиц. Т. н. градиентное, или фракционированное, центрифугирование в растворах сахарозы или солей металлов дало возможность "рассортировать" вирусные частицы, т. к. даже при незначит. различии их веса они распределяются слоями на разных уровнях раствора. Этот метод сыграл большую роль в изучении стадий размножения вирусов. Для изучения физиологнч. условий размножения вирусов предложен (В. Л. Рыжков, 1938) метод метаболитов и антиметаболитов, к-рым стали определять, как влияют на размножение вируса вещества, стимулирующие или подавляющие отд. биохимич. процессы. Применение изотопов (преимуществ, радиоактивных) позволило проследить, из каких источников черпает вирус вещества для построения своего тела. Отд. этапы размножения вируса изучают в бесклеточных препаратах, содержащих, кроме вируса, рибосомы, ферменты клетки и вещества, нужные для построения белков и нуклеиновых кислот. Электронная микроскопия (с 1938) позволила увидеть вирусные частицы, а возможность приготовлять ультратонкие срезы - изучать развитие вируса в тканях (1945).

В. тесно связана с морфологией и физиологией клеток, т. к. для вирусов клетки являются средой обитания; с др. стороны, размеры вирусных частиц близки к размерам крупных молекул, и это даёт возможность изучать их методами, применяемыми к молекулам (рентгеноструктурный анализ и т. п.). Осн. проблемы совр. В.- это систематика вирусов и химиотерапия вирусных заболеваний, а также вопросы, связанные с генетикой и молекулярной биологией.

Журналы по В.: "Вопросы вирусологии" (М., 1956-); "Archiv fur die gesamte Virusforschung" (W., 1939-), "Virus" (Kyoto, 1951-); "Virology" (N.Y., 1955-); "Acta virologica" (Praha, 1957-); "Journal of General Virology" (L., 1967-); "Journal of Virology" (Baltimore, 1967-).

Лит.: Рыжков В. Л., Краткий очерк истории изучения вирусов, "Тр. Ин-та истории естествознания и техники АН СССР", 1961, т. 36, в. 8; Актуальные вопросы вирусологии, М., 1965; Молекулярные основы биологии вирусов, М., 1966; Жданов В. М., Гайдамович С. Я., Вирусология, М., 1966; Рыжков В. Л., Вирусология, в сб.: Развитие биологии в СССР, М., 1967; Вирусные болезни растений. Библиография отечественной литературы за 1924-1966 гг., М.. 1967. В.Л.Рыжков.

ВИРУСОСКОПИЯ (от вирусы и ...скопия), метод микроскопич. изучения строения вирусов. Частицы крупных вирусов (не менее 150 нм) и их скопления могут после соответств. обработки быть выявлены и в световом микроскопе, но В. проводится гл. обр. с помощью электронного микроскопа.

ВИРУСЫ (от лат. virus-яд), фильтрующиеся вирусы, ультравирусы, возбудители инфекц. болезней растений, животных и человека, размножающиеся только в живых клетках. В. мельче большинства известных микробов; почти все В. проходят через бактериальные фильтры. В отличие от бактерий, В. не удаётся культивировать на обычных питат. средах. Для эксперимент, и мед. целей (получения вакцин и др.) В. культивируют в животных и растит, организмах, куриных эмбрионах и в культурах тканей и клеток. В. вызывают мн. заболевания: оспу, корь, грипп, полиомиелит, чуму рог. скота и птиц, бешенство, ряд заболеваний рыб и земноводных, желтуху шелкопряда, мозаичную болезнь табака, закукливание овса, мн. заболевания грибов и синезелёных водорослей и др. (см. Вирусные болезни, Вирусные болезни растений). Обширный отряд В., поражающих бактерии, составляют бактериофаги.

Существование проходящих через бактериальные фильтры возбудителей инфекц. болезней было впервые показано в 1892 Д. И. Ивановским, открывшим фильтруемость возбудителя мозаичной болезни табака. Вскоре была доказана фильтруемость возбудителей ящура (1897), чумы рог. скота (1899), оспы птиц (1902), бешенства (1903) и др. В совр. смысле слово "В." впервые применил М. Бейеринк (1899); раньше В. иногда называли и болезнетворных микробов, напр, возбудителя туберкулёза. По мере изучения В. всё более уточняется и суживается понятие о них. Возбудители ряда болезней, относимые ранее к -В., напр. риккетсии и возбудители пситтакоза, исключены из этой группы организмов. Зрелые частицы В.- вирионы, или вироспор ы, приспособлены к перенесению неблагоприятных условий вне организма и не обнаруживают на этой стадии никаких признаков жизни. Попав в организм, в чувствительные к В. клетки, вироспоры переходят в стадию развития и размножения, которая завершается образованием дочерних зрелых частиц В.

Строение и состав частиц В. Форма вирионов очень разнообразна. У мн. бактериофагов они состоят из головки и отростка, у В. оспы они прямоугольные, у В. герпеса и гриппа - шарообразные, у В. мозаичной болезни табака - палочкообразные, у В. мозаичной болезни картофеля - нитевидные, у В. полиомиелита и жёлтой мозаики турнепса - многогранные шарики, у В. бешенства, а также мозаики пшеницы и люцерны - очертаниями похожи на палочки бактерий или напоминают пулю (см. вклейку к стр. 97). По размерам В. делят на крупные (300-400 нм в диаметре), средние (80-125 нм) и мелкие (20-30 нм). Крупные В. можно видеть в световой микроскоп (обычный, фазово-контрастный, люминесцентный); остальные изучают только с помощью электронного микроскопа. Данные о размерах частиц В. получены методами ультрафильтрации, фракционного и аналитического ультрацентрифугирования, электрофореза в гелях и электронной микроскопии (табл.).

Размеры некоторых вирусов (для сравнения даны размеры эритроцита, бактерии и некоторых молекул)*
Объект исследования

Масса (106 ат. м. водорода)

Диаметр или длина, умноженная на ширину (нм)
Эритроцит

173000000

7500
Кишечная палочка

180000

(1000-3000) -- 500
Вирус вакцины

2300

262-209
" герпеса

1400

213-175
" гриппа

700

103-90
" бактерии Т,

120

80-60 (головка) 100-20 (хвост)
" мозаичной болезни табака

39,2

300-15
" X картофеля

39,0

(500-580)-10
" полиомиелита

6,7

28
" жёлтой мозаики турнепса

5,1

28
" ящура

5,1

28
Белок гемоцианин

6,7

59-13.2
" гемоглобина лошади

0,069

2.8-0.6
" куриного яйца

0,040

1.8-0.6

* Разные авторы в зависимости от применяемых ими методов и др. условий получали величины, отклоняющиеся от приводимы-х, однако порядок величин во всех случаях сохраняется.

В строении разных вирионов есть много общего. Все они имеют белковую оболочку - капсид и внутреннее содержимое - нуклеокапсид, состоящее гл. обр. из нуклеиновой кислоты (НК) - ДНК или РНК. Мн. В. имеют поверхностную оболочку, покрывающую белковую. Отд. элементы белковой оболочки наз. капсомерами. У нек-рых В. (напр., мозаичной болезни табака) НК в виде спирали включена в белковую оболочку, без разрушения к-рой не может быть освобождена. У др. В. (напр., жёлтой мозаики турнепса) спирально закрученная нить НК лежит в капсиде, как в коробочке, и может выйти оттуда без разрушения оболочки. НК - носители наследств, информации о строении и свойствах В.; белки В. защищают НК, а также обусловливают ферментативные и антигенные свойства В. (см. Антигены, Ферменты). Строение вирусных частиц, приспособленных к перенесению неблагоприятных условий, может быть и более сложным; таковы, напр., полиэдры, образуемые нек-рыми В. насекомых (они состоят из оболочки, кристаллич. белковой массы и включённых в неё частиц В.).

Химич. состав разных В. неодинаков. Одни В. содержат липиды; среди них есть В. с ДНК (оспы, герпеса и др.), с РНК (гриппа, птичьей чумы, саркомы Рауса, бронзовости помидора, жёлтой карликовости картофеля и др.). У др. В. липиды отсутствуют. В этой группе также есть В. с ДНК (аденовирусы, большинство бактериофагов, В. желтухи шелкопряда) и с РНК (полиомиелита, ящура; большинство В., вызывающих болезни растений; нек-рые бактериофаги). Кроме липидов, белка и нуклеиновой к-ты, в В. встречаются в небольшом кол-ве полиамины (путресцин, спермидин и др.), иногда витамины (витамин В2, фолиевая к-та), а также ряд металлов; в нек-рых В. содержатся соединения белка с полисаха-ридами.

Размножение В. происходит в клетках. Бактериофаги растворяют оболочку бактерии и вводят в бактерию нить НК, причём капсид фага остаётся вне клетки. Мн. В. поглощаются клеткой путём пиноцитоза. Попав в клетку, они освобождаются от оболочки. Первые этапы развития В. в клетке в общих чертах состоят в том, что строятся т. н. ранние белки, т. е. белки-ферменты, необходимые В. для репликации (удвоения) их НК. Т. н. поздние белки участвуют в образовании белковых оболочек дочерних вироспор. Из ферментов у В., содержащих ДНК, одним из первых синтезируется полимераза РНК, к-рая строит на нити ДНК информационную РНК (и-РНК). Эта РНК попадает на рибосомы клетки, где и происходит синтез др. белков вирусной частицы (см. Белки, раздел Биосинтез). В., содержащие РНК, синтезируют полимеразу, катализирующую синтез новых частиц вирусной РНК; эта РНК переходит на рибосомы и контролирует синтез белка капсида. Т. о., В., содержащие РНК, не нуждаются в ДНК для размножения и передачи генетической информации потомству (см. схему).

Схема размножения вирусов, содержащих в вирионе одну нить ДНК (I) или одну нить РНК (II). ДНК изображена сплошной линией, РНК - пунктиром; А - нуклеиновая к-та вириона; Б - удвоенная нить нуклеиновой кислоты при её репликации; В - информационная РНК, (и-РНК), копирующая вирусную ДНК; Г-цепочка рибосом (полисома), соединённая и-РНК или вирусной РНК (на рибосомах растёт полипептидная цепочка из остатков аминокислот); Д - рибосома с полипептидом, отделившаяся от полисомы; Е - белковая молекула, образованная полипептидными цепочками; Ж -построение дочерней нити нуклеиновой к-ты между двумя материнскими; 3 - зрелый вирион. Стадия В у вирусов с РНК отсутствует, т. к. их собственная РНК выполняет при синтезе белков роль и-РНК.

От этой общей схемы размножения В. имеются различные отклонения. Так, нек-рые В. содержат белки-ферменты; В. осповакцины синтезирует в клетке хозяина двойные нити РНК и т. д. Мн. особенности размножения В. ещё невыяснены. Существуют, напр., особые очаги размножения нитей НК, и при созревании частиц В. синтезируется белок, охватывающий отд. отрезки НК. Иногда этот процесс идёт несовершенно, образуются неполноценные частицы В., в к-рых нет или мало содержимого, это - т. н. неинфекц. В. Во мн.. случаях очаги размножения В. хорошо видны в клетке под микроскопом. Эти очаги наз. внутриклеточными включениями, или Х-телами. Когда Х-тело заканчивает своё развитие, в нём образуется вироспора. У мн. В. вироспоры образуют в Х-телах кристаллич. агрегаты, у др. В. они неизвестны. Нек-рые В. размножаются в ядре клетки, другие - в её цитоплазме, третьи - и в ядре, и в цитоплазме. НК находится в вироспоре в спирально закрученном состоянии. Дл. нити НК у разных В. различна. Так, у В. оспы она достигает 83 мкм, у крупных бактериофагов, напр. Т4,-70 мкм. У мельчайших бактериофагов нить НК имеет дл. ок. 2 мкм. В зависимости от длины нити НК (что определяет объём наследств, информации, к-рой располагает тот или иной В.), т. е. от способности В. синтезировать б. или м. разнообразные молекулы белков, различна степень участия составных частей клетки-хозяина в размножении В. и их построении. В., имеющие нить НК значит, длины, могут синтезировать мн. вещества. Так, нек-рые бактериофаги синтезируют в клетке неск. десятков разных белков. Все В., содержащие ДНК, синтезируют собственную РНК. Даже если клетка-хозяин имеет необходимые для В. ферменты, В. очень часто синтезируют собственные ферменты, обладающие подобным действием. Мельчайшие фаги обладают информацией для синтеза только трёх собственных белков; напр., фаг МЗ-2 синтезирует зависящую от РНК полимеразу и два белка, необходимые для построения зрелых частиц В. Т. о., степень зависимости В. от различных ферментов клетки-хозяина различна. Нек-рые В. так бедны наследственной (генетической) информацией, что могут размножаться в клетке только в присутствии др. В. Зависимость В. не только от клетки, но и от др. В. существует, напр., между В. некроза табака и его спутником, вироспоры к-рогр мельче вироспор некроза табака. Ещё более тесные взаимоотношения существуют между нек-рыми В., поражающими животных и человека. Среди В., способных вызывать злокачественные опухоли (см. Опухолеродные вирусы), известны В. с дефектной частицей, к-рая не может образовывать собственную белковую оболочку. Эти В. достигают зрелого состояния, только если они размножаются в присутствии др. В. (таковы отношения, напр., между опухолеродным обезьяньим вирусом S-40 и нек-рыми аденовирусами). НК опухолеродного В. в этом случае включается в капсид аденовируса и вместе с ним попадает в чувствит. клетку. Выход В. из клетки в одних случаях совершается только при разрушении клетки (мн. фаги, В. оспы), в других - частицы В. покидают клетку, не убивая её при этом (миксовирусы, нек-рые мелкие фаги).

Если в клетку попадают В., различающиеся по тем же или др. генам (различие может быть результатом мутации), то в потомстве можно наблюдать В., соединяющие свойства двух и больше исходных форм. Это указывает на наличие обмена (перекомбинации) признаков таких форм при размножении В. в одной клетке. Закономерности этих процессов изучает генетика В. (см. Генетика микроорганизмов).

Устойчивость вироспор к внешним воздействиям различна, но по большей части велика. Нек-рые В. инактивируются только при нагревании до 90°С (В. мозаичной болезни табака), легко переносят очень низкие температуры (-70°С и ниже), а также высушивание.

Способы распространения В. в природе различны: мн. из них могут непосредственно заражать чувствит. организм (В. гриппа, оспы, мозаичной болезни табака, бактериофаги), иные циркулируют в природе более сложным образом и переносятся при помощи др. организмов. Так, В. некроза табака передаётся при помощи обитающего в почве грибка (Olpidium): последний, проникая в корни ра