БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

циплинами, к-рые одновременно исследуют ряд важнейших типов веществ. Б. х. изучает вещества, лежащие в основе процессов жизнедеятельности, в непосредств. связи с познанием их биол. функции. Осн. объекты Б. х.- биополимеры (белки и пептиды, нуклеиновые к-ты и нуклеотиды, липиды, полисахариды и т. д.), превращения к-рых составляют химич. сущность биол. процессов, и биорегуляторы (ферменты, витамины, гормоны, в т. ч. и фи-тогормоны, и др., а также синтетич. биологически активные соединения, напр, лекарств, препараты, ростовые вещества, инсектофунгициды, гербициды и т. д.), к-рые химически регулируют обмен веществ. Б. х. занимается получением этих веществ в химически чистом состоянии, установлением строения, синтезом, выяснением зависимостей между строением и биол. свойствами, изучением хим. аспектов механизма биол. действия биополимеров, а также природных и синтетич. биорегуляторов. Характерная особенность Б. х.- использование всего комплекса хим. и физ. методов индивидуализации веществ (хроматографич. и электро-форетич. методы, противоточное распределение и др.) и выяснение их строения (ультрафиолетовая, инфракрасная, а также Раман-спектроскопия, ядерный магнитный резонанс, электронный и протонный резонанс, химич. масс-спектрометрия, рентгеноструктурный анализ и т. д.). Решение осн. проблем Б. х. важно для дальнейшего прогресса биологии. Без выяснения строения и свойств важнейших биополимеров и биорегуляторов нельзя познать сущность жизненных процессов, а тем более найти пути управления такими сложными явлениями, как размножение и передача наследственных признаков, нормальный и злокачественный рост клеток, иммунитет, память, передача нервного импульса и мн. др. В то же время изучение высокоспециализированных биологически активных веществ и процессов, протекающих с их участием, может открыть принципиально новые возможности для развития химии, хим. технологии и техники. .К проблемам, решение к-рых связано с исследованиями в области Б. х., относятся: создание строго специфичных высокоактивных катализаторов (на основе изучения строения и механизма действия ферментов), прямое превращение хим. энергии в механическую (на основе изучения мышечного сокращения), использование в технике хим. принципов хранения и передачи информации, осуществляемых в биол. системах, принципов саморегулирования многокомпонентных систем клетки в первую очередь избират. проницаемости биол. мембран, и мн. др. Перечисленные проблемы лежат далеко за пределами собственно Б. х.; однако она создает осн. предпосылки для разработки этих проблем, обеспечивая главные опорные пункты для развития биохимич. исследований, относящихся уже к области молекулярной биологии. Широта и важность решаемых проблем, разнообразие методов и тесная связь с др. науч. дисциплинами обеспечили быстрое развитие Б. х.

Лит.: Шемякин М. М., Современные проблемы биоорганической химии, М.. 1965; Развитие органической химии в СССР, М., 1967, с. 509 - 73; Хохлов А. С., Овчинник о в Ю. А., Химические регуляторы биологических процессов, М., 1969; Bioorga-nic chemistry, S. F., 1968. А. С. Хохлов.

БИООРИЕНТАЦИЯ (от био... и ориентация), способность организмов определять своё местонахождение в пространстве, выбирать оптимальное положение по отношению к действующим на него силам (факторам среды) и определять биологически целесообразное направление движения. Б.- одно из осн. условий приспособления организмов к окружающей среде (адаптации), что может осуществляться тремя путями: изменением состояния организма в соответствии с меняющимися условиями (морфо-физиол. адаптация); сменой мест обитания (см. Кочёвки животных, Миграции животных): изменением обстановки путём образования скоплений (стай, стад и т. п.) или постройки убежищ (нор, гнёзд и т. п.). Б. основана на свойстве раздражимости и восприятия внеш. воздействий физич., химич. и биол. природы. У высших беспозвоночных (членистоногие, моллюски) и у позвоночных животных восприятие, или рецепция, внеш. воздействий (сигналов) осуществляется спец. органами чувств, а их реакции Б. приобретают характер сложных инстинктов, лежащих в основе бионавигации. Выбор направления при передвижениях осуществляется на основании рецепции химич., механич. (тактильных), акустич., электрич. или оптич. раздражителей (сигналов) и их локации, т. е. определения положения по отношению к животному (см. Биолокация). Работа большинства механизмов локации обеспечивается парностью органов чувств (зрения, слуха, равновесия и др.), позволяющей сравнивать сигналы, сопоставляя силу, частотную характеристику и др. параметры сигналов, поступивших в правый и левый органы чувств, и т. о. определять направление их источника.

Лит.: Протасов В. Р., Биоакустика рыб, М., 1965; Бионика. [Сб. ст.], М., 1965; Мазохин-Поршняков Г. А., Зрение насекомых, М., 1965; Глезер В. Д., Механизмы опознания зрительных образов, М.- Л., 1966; Райт Р. X., Наука о запахах, пер. с англ.. М., 1966; Мили Л. Дж. и М и л н М. Д ж., Чувства животных и человека, пер. с англ., М., 1966; С л о н и м А. Д., Инстинкт загадки врожденного поведения организмов, Л., 1967; Вопросы бионики. [Сб. ст.], М., 1967; Мартека В., Бионика, пер. с англ., М., 1967; Протасов В. Р., Зрение и ближняя ориентация рыб, М., 1968; Тинберген Н., Поведение животных, пер. с англ., М., 1969.

Н. П. Наумов.

БИОПОЛИМЕРЫ, высокомолекулярные природные соединения, являющиеся структурной основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки, нуклеиновые кислоты и полисахариды; известны также смешанные Б.- гликопротеиды, липопротеяды, гликолипиды и др.

Биологические функции Б. Нуклеиновые кислоты выполняют в клетке генетич. функции. Последовательность мономерных звеньев (нуклеотидов) в дезоксирибонуклеиновой кислоте -ДНК (иногда в рибонуклеиновой кислоте - РНК) определяет (в форме генетического кода) последовательность мономерных звеньев (аминокислотных остатков) во всех синтезируемых белках и, т. о., строение организма и протекающие в нём оиохим. процессы. При делении каждой клетки обе дочерние клетки получают полный набор генов благодаря предшествующему самоудвоению (репликации) молекул ДНК. Генетич. информация с ДНК переносится на РНК, синтезируемую на ДНК как на матрице (транскрипция). Эта т. н. информационная РНК (и-РНК) служит матрицей при синтезе белка, происходящем на особых органоидах клетки - рибосомах (трансляция) при участии транспортной РНК (т-РНК). Биол. изменчивость, необходимая для эволюции, осуществляется на молекулярном уровне за счёт изменений в ДНК (см. Мутация).

Белки выполняют в клетке ряд важнейших функций. Белки-ферменты осуществляют все химич. реакции обмена веществ в клетке, проводя их в необходимой последовательности и с нужной скоростью. Белки мышц, жгутиков микробов, клеточных ворсинок и др. выполняют сократит, функцию, превращая химич. энергию в механич. работу и обеспечивая подвижность организма в целом или его частей. Белки - осн. материал большинства клеточных структур (в т. ч. в специальных видах тканей) всех живых организмов, оболочек вирусов и фагов. Оболочки клеток являются липопротеид-ными мембранами, рибосомы построены из белка и РНК и т. д. Структурная функция белков тесно связана с регуляцией поступления различных веществ в субклеточные органеллы (активный транспорт ионов и др.)и с ферментативным катализом. Белки выполняют и регуляторные функции (репрессоры), "запрещая" или "разрешая" проявление того или иного гена. В высших организмах имеются белки - переносчики тех или иных веществ (напр., гемоглобин - переносчик молекулярного кислорода) и иммунные белки, защищающие организм от чужеродных веществ, проникающих в организм (см. Иммунитет). Полисахариды выполняют структурную, резервную и нек-рые др. функции. Белки и нуклеиновые к-ты образуются в живых организмах путём матричного ферментативного биосинтеза. Имеются теперь и биохим. системы внеклеточного синтеза Б. с помощью ферментов, выделенных из клеток. Разработаны методы химич. синтеза белков и нуклеиновых к-т.

Первичная структура Б. Состав и последовательность мономерных звеньев Б. определяют их т. н. первичную структуру. Все нуклеиновые к-ты являются линейными гетерополимерами-сахарофосфатными цепочками, к звеньям к-рых присоединены боковые группы -азотистые основания: аденин и тимин (в РНК - урацил), гуанин и цитозин; в нек-рых случаях (гл. обр. в т-РНК) боковые группы могут быть представлены др. азотистыми основаниями. Белки -также гетерополимеры; молекулы их образованы одной или неск. полипептидными цепочками, соединёнными дисульфид-ными мостиками. В состав полипептидных цепей входит 20 видов различных мономерных звеньев - остатков аминокислот. Мол. масса ДНК варьирует от неск. млн. (у мелких вирусов и бактериофагов) до ста млн. и более (у более крупных фагов); бактериальные клетки содержат по одной молекуле ДНК с мол. массой в неск. млрд. ДНК высших организмов может иметь и большую мол. массу, ноизмерить её пока не удалось из-за разрывов в молекулах ДНК, возникающих при их выделении. Рибосомные РНК имеют мол. массу от 600 тыс. до 1,1 млн., информационная (и-РНК) - от сотен тысяч до неск. миллионов, транспортная (т-РНК) - ок. 25 тыс. Мол. масса белков варьирует от 10 тыс. (и менее) до миллионов; в последнем случае, однако, обычно возможно разделение белковой частицы на субъединицы, соединённые между собой слабыми, б. ч. гидрофобными, связями.

К о н ф о р м а ц и я, т. е. та или иная пространственная форма молекул Б., определяется их первичной структурой. В зависимости от хим. строения и внеш. условий молекулы Б. могут находиться либо в одной или в неск. преимущественных конформациях (обычно встречающиеся в природных условиях нативные состояния Б.: напр., глобулярное строение белков, двойная спираль ДНК), либо принимать многие б. или м, равновероятные конформации. Белки делят по пространственной структуре на фибриллярные (нитевидные) и глобулярные; белки-ферменты, белки-переносчики, иммунные н нек-рые др. имеют, как правило, глобулярную структуру. Для ряда белков -гемоглобин, миоглобин, лизоцим, рибонуклеаза и др.- эта структура установлена во всех деталях (с определением при помощи рентгеноструктурного анализа расположения каждого атома). Она определяется последовательностью аминокислотных остатков и образуется и поддерживается относительно слабыми взаимодействиями между мономерными звеньями полипептидных цепей в водносолевом растворе (кулоновские и диполь-ные силы, водородные связи, гидрофобные взаимодействия), а также дисульфидными связями. Глобула белка формируется так, что большинство полярных гидрофильных аминокислотных остатков оказывается снаружи и контактирует с растворителем, а большинство неполярных (гидрофобных) остатков находится внутри и изолировано от взаимодействия с водой. Молекулы белка, обладающие избытком неполярных групп, когда часть из них оказывается на поверхности глобулы, образуют высшую, т. ц. четвертичную структуру, при к-рой неск. глобул агрегируют, взаимодействуя между собой в основном неполярными участками (рис. 1). Пространств, структура каждого белка-фермента уникальна и обеспечивает необходимое для его функционирования расположение в пространстве всех звеньев Б., в особенности т. н. активных центров. В то же время она не абсолютно жестка и допускает необходимые в процессе функционирования (при взаимодействии с субстратами, ингибиторами и др. веществами) конформационные сдвиги и изменения.

[0353-1.jpg]
Рис. 1. Образование четвертичной структуры глобулярных белков. Заштрихованы редко -полярные (гидрофильные ) части белковых глобул, густо - неполярные (гидрофобные) области.

Пространств, структура нативной ДНК образована двумя комплементарными нитями и представляет собой двойную спираль Крика - Уотсона; в ней противоположные азотистые основания попарно связаны водородными связями - аденин с тимином и гуанин с цитозином. Устойчивость двойной спирали обеспечивается, наряду с водородными связями, также гидрофобным взаимодействием между плоскими кольцами азотистых оснований, расположенных стопкой (стопочное взаимодействие, или стакинг). Нити РНК спирализованы лишь частично. ДНК вирусов, бактериофагов, бактерий а также митохондриальная в ряде случаев представляет собой замкнутое кольцо; при этом наряду со спиралью Крика - Уотсона наблюдается ещё дополнительная т. н. сверхспирализация.

Денатурация Б. Нарушение нативной пространств, структуры Б. при различных воздействиях (повышение темп-ры, изменение концентрации металлов, кислотности раствора и др.) наз. денатурацией и в ряде случаев обратимо (обратный процесс наз. ренатурацией; рис. 2). Молекулы Б.- кооперативные системы; поведение их зависит от взаимодействий составляющих частей. Коопера-тивность молекул Б. определяется тем, что повороты отдельных звеньев из-за внутримолекулярных взаимодействий зависят от конформации соседних звеньев. В основе денатурации Б. при изменении внешних условий обычно лежат кооперативные конформационные превращения (напр., переходы сс-спираль - b-структура, а-спираль - клубок, b-структура -клубок для полипептидов, переход глобула - клубок для глобулярных белков, переход спираль - клубок для нуклеиновых к-т). В отличие от фазовых переходов (кипение жидкости, плавление кристалла), являющихся предельным случаем кооперативных процессов и происходящих скачком, кооперативные переходы Б. совершаются в конечном, хотя и сравнительно узком, интервале изменений внешних условий. В этом интервале одномерные, линейные молекулы (нуклеиновые к-ты,полипептиды), претерпевающие переход спираль - клубок, разбиваются на чередующиеся спиральные и клубкообразные участки (рис. 3).

[0353-2.jpg]

Рис. 2. Схема денатурации и ренатурации глобулярного белка (на примере фермента рибонуклеазы).

[0353-3.jpg]

Рис. 3. Схема перехода спираль - клубок для ДНК: 1 -нативное состояние (вместо двойной спирали для простоты изображена "верёвочная лестница"); 2 - состояние ДНК в области перехода; 3 - денатурированное состояние (однонитевые клубки).
[0353-4.jpg]

Рис. 4. Кривые перехода спираль - клубок (денатурации) нуклеиновых кислот из различных организмов: 1 - бактериальная ДНК; 2 - ДНК из зобной железы телёнка; 3 - РНК вируса табачной мозапки.

Переход спираль - клубок в ДНК наблюдается при повышения темп-ры, добавлении в раствор к-ты или щёлочи, а также под влиянием др. денатурирующих агентов. Этот переход в гомополи-нуклеотидах происходит при нагревании в интервале десятых долей °С, в фаговых и бактериальных ДНК - в интервале 3-5°С (рис. 3), в ДНК высших организмов - в интервале 10-15°С. Чем выше гетерогенность ДНК, тем шире интервал перехода и меньше способность молекул ДНК к ренатурации. Переход спираль - клубок в различных видах РНК носит менее кооперативный характер (рис. 4) и происходит в более широком интервале темп-рных или др. денатурирующих воздействий.

Б.- полимерные электролиты, их пространственная конформация и кооперативные переходы зависят как от степени ионизации молекулы, так и от концентрации ионов в среде, что влияет на электростатич. взаимодействия как между отдельными частями молекулы, так и между Б. и растворителем.

Строение и биологи ч. функции Б. Строение Б.- результат длит, эволюции на молекулярном уровне, вследствие чего эти молекулы идеально приспособлены к выполнению своих биологич. задач. Между первичной структурой, конформацией Б. и конформационными переходами, с одной стороны, и их биол. функциями - с другой, существуют тесные связи, исследование к-рых - одна из гл. задач молекулярной биологии. Установление таких связей в ДНК позволило понять осн. механизмы репликации, транскрипции и трансляции, а также мутагенеза и нек-рых др. важнейших биологич. процессов. Линейная структура молекулы ДНК обеспечивает запись генетич. информации, её удвоение при матричном синтезе ДНК и получение (также путём матричного синтеза) мн. копий с одного и того же гена, т. е. молекул и-РНК. Сильные ковалентные связи между нуклеотидами обеспечивают сохранность генетич. информации при всех этих процессах. В то же время относительно слабые связи между нитями ДНК и возможность вращения вокруг простых химич. связей обеспечивают гибкость и лабильность пространств. структуры, необходимые для разделения нитей при репликации и транскрипции, а также подвижность молекулы и-РНК, служащей матрицей при биосинтезе белка (трансляция). Исследование пространств, структуры и конформационных изменений белков-ферментов на разных стадиях ферментативной реакции при взаимодействии с субстратами и коферментами даёт возможность установить механизмы биокатализа и понять природу огромного ускорения хим. реакций, осуществляемого ферментами.

Методы исследования Б. При исследовании строения и конфор-мацнонных превращений Б. широко используются как очищенные природные Б., так и их синтетич. модели, к-рые проще по строению и легче поддаются исследованию. Так, при изучении белков моделями служат гомогенные или гетерогенные полипептиды (с заданным или случайным чередованием аминокислотных остатков). Моделями ДНК и РНК являются соответствующие синтетич. гомогенные или гетерогенные полинуклеотиды. К методам исследования Б. и их моделей относятся рентгеноструктурный анализ, электронная микроскопия, изучение спектров поглощения, оптич. активности, люминесценции, методы светорассеяния и динамич. двойного лучепреломления, седиментационный метод, вискозиметрия, физико-химич. методы разделения и очистки и ряд др. Все методы, разработанные для изучения синтетич. полимеров, применимы и к Б. При трактовке свойств Б. и их моделей, закономерностей их конформационных превращений используются также методы теоретич. физики (статистич. физики, термодинамики, квантовой механики и др.).

Лит.: Б р е с л е р С. Е.. Введение в молекулярную биологию, М. - Л., 1966; В о л ь к е н ш т е й н М. В., Молекулы и жизнь, М., 1965; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Физические методы исследования белков и нуклеиновых кислот, М., 1967. Ю. С. Лазуркин.

БИОПСИЯ (от био... к греч. opsis -вид, зрелище), иссечение кусочка болезненно изменённой ткани живого организма с последующим микроскопич. исследованием его для определения характера патологического процесса (воспаление, опухоль и т. д.). Б. позволяет не только уточнить клинич. диагноз, но и установить границ