БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ыло отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в авг. 1968 7-я Мировая энергетич. конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из осн. производителей электроэнергии.

Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; К а л а-ф а т п Д. Д-, Термодинамические циклы атомных электростанций, М.- Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М.. 1968.

С. П. Кузнецов.

АТОМНАЯ ЭНЕРГИЯ, энергия, выделяющаяся в процессе превращения атомных ядер. Источником А. э. является внутренняя энергия атомного ядра. Более точное название А. э.- ядерная энергия.

"АТОМНАЯ ЭНЕРГИЯ", советский ежемесячный научно-технич. журнал, орган Гос. комитета по использованию атомной энергии СССР и АН СССР. Издаётся в Москве с 1956. Тематика журнала: ядерная энергетика, сырьё и материалы для атомной промышленности, применение изотопов и ионизующих излучений в нар. х-ве, радиан. безопасность, ядерное приборостроение, проблема управляемых термоядерных реакций и физика плазмы, непосредств. преобразование ядерной энергии в электрическую, ускорение заряженных частиц, нейтронная физика и физика деления атомных ядер. Тираж (1970) 2730 экз.

АТОМНО-ВОДОРОДНАЯ СВАРКА, электрич. сварка дугой перем. тока, горящей между двумя вольфрамовыми электродами в атмосфере водорода. Обрабатываемый металл не включают в цепь дуги (косвенный нагрев). В зону дуги подают водород (иногда диссоциированный аммиак). По способу действия А.-в. с. следует считать одним из видов плазменной сварки. Напряжение источника тока ок. 300 в, сила тока 20-80 а, диаметр электродов 1,5-4 мм. Водород диссоциирует с превращением двухатомного водорода в атомарный Hj-> 2Н, с затратой энергии ок. 400 Мдж/кмоль (100 000 кал/моль). На поверхности металла водород рекомбинирует в двухатомную форму., освобождает энергию диссоциации, передаёт её металлу и расплавляет его с образованием сварочной ванны. А.-в. с. нержавеющей стали и алюминия толщиной 1-5 мм применяют в незначит. размерах; её вытесняет аргоно-дуговая сварка. К. К. Хренов.

АТОМНОЕ ВРЕМЯ, система счёта времени, в к-рой единичный интервал времени определяется с помощью электромагнитных колебаний, излучаемых (или поглощаемых) атомами (или молекулами) нек-рых веществ. За предварит. единицу А. в. принята атомная секунда. Для измерения А. в. созданы устройства, называемые атомными и молекулярными часами (см. Квантовые стандарты частоты, Квантовые часы).

АТОМНОЕ ОРУЖИЕ, оружие, поражающее действие к-рого основано на использовании внутриядерной энергии. Более правильный термин - ядерное оружие.

АТОМНОЙ ЭНЕРГИИ ИНСТИТУТ им. И. В. К у р ч а т о в а Г о с. к о м и т е т а п о и с п о л ь з о в а н и ю а т о м н о й э н е р г и и С С С Р, создан в Москве в 1943 (до 1955 назывался Лабораторией № 2 АН СССР). Основателем и первым директором А. э. и. был акад. И. В. Курчатов (по 7 февраля 1960). После его смерти директором стал акад. А. П. Александров. В А. э. и. работает ряд видных учёных, среди них: академики АН СССР А. П. Александров, Л. А. Арцимович, Е. К. Завойский, И. К. Кикоин, М. А. Леонтович, А. Б. Мигдал, М.Д. Миллионщиков, чл.-корр. АН СССР Е. П. Велихов, И. И. Гуревич, Б. Б. Кадомцев, П. Е. Спивак.

В А. э. и. решались физ. задачи, связанные с использованием ядерной энергии: осуществлена первая в Европе цепная реакция деления урана в уран-графитовом котле (25 дек. 1946), развита теория гетерогенных ядерных реакторов, разработаны методы разделения изотопов, выполнены измерения ядерных констант, важных для развития цепной реакции, решён ряд проблем радиохимии. После успешного разрешения задач по укреплению обороны Сов. государства А. э. и. сосредоточил свои силы на ядерной энергетике и фундаментальных науч. проблемах. По физ. разработкам А. э. и. спроектировано и построено большинство исследовательских и энергетических атомных реакторов в СССР и других социалистич. странах, а также реактор ледокола "Ленин". А. э. и. является центром исследований по термоядерным реакциям и физике плазмы в СССР. Он ведёт обширную программу исследований по физике атомного ядра, физике твёрдого тела, а также работы по МГД-генераторам (магнито-гидродина-мическим генераторам) и др. методам прямого преобразования тепловой энергии в электрическую. Отдел молекулярной биологии занимает одно из ведущих мест в СССР.

А. э. и. располагает самым современным оборудованием. В нём работают первый в Европе реактор Ф-1; уран-бериллиево-графитовый реактор МР мощностью 40 Мвт с потоком нейтронов до 8*1014 см-2-сек~'; реакторы водо-водяные ВВР-2 и ИРТ-М на 2,5 и 5 Мвт соответственно; реактор с органическим теплоносителем ОР на 0,3 Мвт; уникальный циклотрон с регулируемой энергией, ускоряющий протоны (от 6 до 17 Мэв), дейтроны, Не3, Li++, Li+++ (циклотрон работает также в режиме спектрометра быстрых нейтронов от 0,5 до 25 Мэв); четыре электростатических генератора до 7 Мэв; электромагнитные разделители стабильных изотопов (А. э. и. является держателем фонда разделённых изотопов СССР); крупные термоядерные экспериментальные установки. А. э. и. обладает мощной криогенной базой для получения жидкого азота, неона и гелия, разветвлённой энергетич. системой и вспомогательными технологич. подразделениями.

От А. э. и. отпочковались в самостоят. учреждения Радиотехнич. ин-т (Москва), Лаборатория ядерных проблем и Лаборатория ядерных реакций Объединённого ин-та ядерных исследований (Дубна), Ин-т ядерной физики Сиб. отделения АН СССР (Новосибирск) и др.

И. Н. Головин.

АТОМНЫЕ ЕДИНИЦЫ МАССЫ, единицы измерения массы атомов, молекул и элементарных частиц. Для измерения массы атомов и молекул до 1961 в химии применялась А. е. м., определявшаяся как 1/16 атомной массы элемента кислорода и равная 1,66022-10-24 г. В физике за А. е. м. принималась 1/16 массы атома самого лёгкого из стабильных изотопов кислорода, массовое число которого (т. е. общее число протонов и нейтронов в ядре) равно 16. Физич. А. е. м. равнялась 1,65976*10-24г. Химич. А. е. м. в 1,000275 раза больше физической, т. к. природный кислород содержит 3 стабильных изотопа: 16О (99,76%), 17О(0,04%), 18О(0,20%). В 1961 была установлена как в физике, так и в химии унифицированная А. е. м., определяемая как 1/12 массы изотопа углерода с массовым числом 12, равная (1,66043+-0,00031)-10- 24 г. Унифицированная

А. е. м. равна 1,0003179 прежней физич. А. е. м. и весьма близка к прежней химич. А. е. м. Для элементарных частиц (электронов, нуклонов, мезонов и т. п.) в качестве единицы массы применяют массу электрона, равную 5,486-10-4 унифициров. А. е. м. или 9,1091•10- 28 г.

Л. А. Сена.

АТОМНЫЕ ПУЧКИ, см. Молекулярные пучки.

АТОМНЫЕ РАДИУСЫ, характеристики атомов, позволяющие приблизительно оценивать межатомные расстояния в веществах. Согласно квантовой механике, атом не имеет определённых границ,но вероятность найти электрон на данном расстоянии от ядра атома, начиная с нек-рого расстояния, весьма быстро убывает. Поэтому можно приближённо приписать атому нек-рый размер. Для всех атомов этот размер порядка 10-8 см, т. е. 1 А или 0,1 нм. Опытные данные показывают, что, суммируя для атомов А и В значения величин, наз. А. р., во многих случаях удаётся получить значение межатомного расстояния АВ в хим. соединениях и кристаллах, близкое к истинному. Это свойство межатомных расстояний, наз. аддитивностью, оправдывает применение А. р. Последние подразделяются на металлические и ковалентные.

За металлич. радиус принимается половина кратчайшего межатомного расстояния в кристаллич. структуре элемента-металла. Металлич. радиус зависит от числа ближайших соседей атома в структуре (координационного числа К). Если принять А. р. при К = 12 (это значение К чаще всего встречается в металлах) за 100% , то А. р. при К=8, 6 и 4 составят 98, 96 и 88% соответственно. А. р. металлов применяют для предсказания возможности образования и анализа строения сплавов и интерметал-лич. соединений. Так, близость А. р.- необходимое, хотя и недостаточное условие взаимной растворимости металлов по типу замещения: магний (А. р. 1,60А) в широких пределах образует твёрдые растворы с литием (1,55 А) и практически не образует их с натрием и калием (1,89 А и 2,36 А). Аддитивность А. р. позволяет ориентировочно предсказывать параметры решёток интерметаллов (например, для тетрагональной структуры B-АlСr2, расчёт даёт а = 3,06 А, с = 8,60 А, соответствующие экспериментальные значения 3,00 А и 8,63 А). Ковалентные радиусы представляют собой половину длины ординарной связи X - X, где X - элемент-неметалл. Так, напр., в случае галогенов А. р.- это половина межатомного расстояния в молекулах Х2, для серы и селена - в молекулах Х8, для углерода - это половина длины связи в кристаллич. структуре алмаза или в молекулах предельных углеводородов. Повышение кратности связи (напр., в молекулах бензола, этилена, ацетилена) приводит к уменьшению её длины, что иногда учитывают введением соответствующей поправки. Приблизительно выполняющаяся аддитивность ковалент-ных радиусов позволяет вычислить их значения и для металлов (из длин ко-валентных связей Me - X, где Me - металл). В нек-рых исследованиях, сравнивая экспериментально найденные расстояния Me - X с суммами ковалентных радиусов и ионных радиусов, судят о степени ионности связи. Однако меж-

атомные расстояния X-X и Me - X заметно зависят от валентного состояния атомов. Последнее уменьшает универсальность ковалентных радиусов и ограничивает возможность их применения. О связи А. р. элементов с их положением в периодической системе см. Периодическая система элементов Д. И. Менделеева.

Лит.: Бокий Г. Б., Кристаллохимия, 2 изд., М., 1960; Жданов Г. С., физика твердого тела, М., 1962; Китайгородский А. И., Органическая кристаллохимия, М., 1955; Bastiansen О., Т г а е t-t e b e r g M-, The nature of bonds between carbon atoms, "Tetrahedron", 1962, v. 17, Mb 3. П. М. Зоркий.

АТОМНЫЕ СПЕКТРЫ, спектры оптические, получающиеся при испускании или поглощении света (электромагнитных волн) свободными или слабо связанными атомами; такими спектрами обладают, в частности, одноатомные газы и пары. А. с. являются л и н е й ч ат ы м и - они состоят из отдельных с п е к т р а л ь н ы х л и н и й . А. с. наблюдаются в виде ярких цветных линий при свечении газов или паров в электрич. дуге или разряде (спектры испускания) и в виде тёмных линий (спектров поглощения). Каждая спектральная линия характеризуется определённой частотой колебаний v испускаемого или поглощаемого света и соответствует определённому квантовому переходу между уровнями энергии Et и Еи атома согласно соотношению: hv= Et - Eh, где h - Планка постоянная). Наряду с частотой спектральную линию можно характеризовать длиной волны X=c/v, волновым числом 1/Л = V1с (с - скорость света) и энергией фотона hv.

А. с. возникают при переходах между уровнями энергии внешних электронов атома и наблюдаются в видимой, ультрафиолетовой и близкой инфракрасной областях. Такими спектрами обладают как нейтральные, так и ионизованные атомы; их часто наз. соответственно дуговыми и искровыми спектрами (нейтральные атомы легко возбуждаются и дают спектры испускания в электрич. дугах, а положит. ионы возбуждаются труднее и дают спектры испускания преим. в искровых электрич. разрядах). Спектры ионизованных атомов смещены по отношению к спектрам нейтральных атомов в область больших частот, т. е. в ультрафиолетовую область. Это смещение тем больше, чем выше кратность ионизации атома - чем больше электронов он потерял. Спектры нейтрального атома и его последовательных ионов обозначают в спектроскопии цифрами I, II, III, ... В реально наблюдаемых спектрах часто присутствуют одновременно линии нейтрального и ионизованных атомов; так говорят, напр., о линиях Fel, Fell, Felll в спектре железа, соответствующих Fe, Fe+, Fe2+.

Линии А. с. образуют закономерные группы, наз. с п е к т р а л ь н ы м и с е р и я м и. Промежутки между линиями в серии убывают в сторону коротких длин волн, и линии сходятся к г р ан и ц е с е р и и. Наиболее прост спектр атома водорода. Волновые числа линий его спектра с огромной точностью определяются формулой Бальмера:

где n1 и n2 - значения главного квантового числа для уровней энергии, между к-рыми происходит квантовый переход
Жёлтая линия в спектре атома Na (дублет X = 5690 А и X =5696 А).

(см. Атом, рис. 1,6). Значение ni = l, 2, 3, ... определяет серию, а значение n2=n1 + 1, Ni + 2, n1+З,... определяет отд. линии данной серии; R - Ридберга постоянная (выраженная в волновых числах). При n1 = l получается серия Лаймана, лежащая в далёкой ультрафиолетовой области спектра, при n1=2 - серия Бальмера, линии к-рой расположены в видимой и близкой ультрафиолетовой областях. Серии Пашена (n1 =3), Брэкета (n1 =4), Пфаунда (n1=5), Хамфри (n1=6) лежат в инфракрасной области спектра. Аналогичными спектрами, только с увеличенным в Z2 раз масштабом (Z - атомный номер), обладают водородоподобные ионы Не+, 1i2+, ...(спектры Hell, Lilll,...).

Спектры атомов щелочных металлов, обладающих одним внешним (оптическим) электроном помимо заполненных оболочек, схожи со спектром атома водорода, но смещены в область меньших частот; число спектральных серий увеличивается, а закономерности в расположении линий усложняются. Пример - спектр Na, атом которого обладает нормальной электронной конфигурацией Is2 2s2 2p6 3s (см. в ст. Атом - Заполнение электронных оболочек и слоев) с легко возбуждаемым внешним электроном 3s; переходу этого электрона из состояния 3s в состояние Зр соответствует жёлтая линия Na (д у б л ет X, = 5690А и Х.=569бА; см. рис.), с к-рой начинается т. н. г л а в н а я с е р и я N a, члены к-рой соответствуют переходам между состоянием 3s и состояниями Зр, 4р, 5р,...; граница серии соответствует ионизации атома Na.

Для атомов с двумя или неск. внешними электронами спектры значительно усложняются, что обусловлено взаимодействием электронов. А. с. особенно сложны для атомов с заполняющимися а- и f-оболочками; число линий доходит до многих тысяч, и уже нельзя обнаружить простых серий, аналогичных сериям в спектрах водорода и щелочных металлов. Однако и в сложных спектрах можно установить определённые закономерности в расположении линий, произвести систематику спектра и определить схему уровней энергии.

Систематика спектров атомов с двумя или более внешними электронами основана на приближённой характеристике отдельных электронов при помощи квантовых чисел п и L (см. Атом) с учётом взаимодействия этих электронов друг с другом. При этом приходится учитывать электростатич. взаимодействия электронов - отталкивание по закону Кулона, и магнитные взаимодействия спиновых и орбитальных моментов (см. Спин, Спин-орбитальное взаимодействие), к-рые приводят к тонкому расщеплению уровней энергии (см. Тонкая структура). Благодаря этому у большинства атомов спектральные линии представляют собой более или менее тесную группу линий, называемую мультиплетом. Так, у всех щелочных металлов линии двойные (д у б-л е т ы), причём расстояния между мультиплетными уровнями увеличиваются с увеличением атомного номера элемента. У щёлочноземельных элементов наблюдаются одиночные линии (сингулеты) и тройные (т р и п л е т ы). Спектры следующих столбцов таблицы Менделеева образуют всё более сложные мультипле-ты, причём нечётным столбцам соответствуют чётные мультиплеты, а чётным столбцам - нечётные.

Кроме тонкой структуры, в А. с. наблюдается сверхтонкая структура, обусловленная магнитными моментами ядер. Сверхтонкая структура по порядку величины в 1000 раз уже обычной муль-типлетной структуры и исследуется методами радиоспектроскопии.

В А. с. проявляются не все переходы между уровнями энергии данного атома или иона, а лишь вполне определённые, допускаемые (разрешённые) т. н. отбора правилами, зависящими от характеристик уровней энергии. В случае одного внешнего электрона возможны лишь переходы, для к-рых азимутальное квантовое число / увеличивается или уменьшается на 1; правило отбора имеет вид: дl = ±1. В результате s-уровни (l=0) комбинируют с р-уровня-ми (L = 1), р-уровни -с d-уровнями (L = 2) и т. д., что определяет возможные спектральные серии для атомов щелочных металлов, частный случай которых представляет главная серия Na (переходы 3s>np, где n=3, 4, 5,...); другие переходы этим правилом отбора запрещены. Для многоэлектронных атомов правила отбора имеют более сложный пил.

Количественной характеристикой разрешённого оптич. перехода является его в е р о я т н о с т ь (см. Вероятность перехода), определяющая, как часто этот переход может происходить; вероятность запрещённых переходов равна нулю. От вероятностей переходов зависят и н т е н с и в н о с т и спектральных линий. В простейших случаях вероятности переходов для А. с. могут быть рассчитаны по методам квантовой механики.

Наряду с изучением А. с. для свободных атомов значительный интерес представляет исследование изменений в А. с. при внешних воздействиях на атомы. Под действием внешнего магнитного или электрич. поля происходит расщепление уровней энергии атома и соответствующее расщепление спектральных линий (см. Зеемана явление я Штарка явление).

Исследование А. с. сыграло важную роль в развитии представлений о строении атома (см. Атомная физика). Методы, основанные на изучении А. с., очень широко распространены в различных областях науки и техники. А. с. позволяют определить ряд весьма важных характеристик атомов и получить ценные сведения о строении электронных оболочек атома. Чрезвычайно существенно применение А. с. в эмиссионном спектральном анализе (по А. с. испускания), к-рый благодаря высокой чувствительности, быстроте и универсальности завоевал прочное место в металлургии, горнорудной пром-сти, машиностроении и во многих др. отраслях нар. х-ва; наряду с эмиссионным спектральным анализом у