БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

1923; Бор Н., Три статьи о спектрах и строении атомов, пер. с нем., М., 1923; Маковельский А. О., Древнегреческие атомисты, Баку, 1946; Кедров Б. М., Атомистика Дальтона, М.- Л., 1949; его же, Эволюция понятия элемента в химии, М., 1956; Г е и -зенберг В., Философские проблемы атомной физики, пер. с нем., М., 1953; Зубов В. П., Развитие атомистических представлений до начала XIX в., М., 1965. См. также лит. при ст. Атомная физика.

Б. М. Кедров.

АТОМНАЯ АРТИЛЛЕРИЯ, арт. системы, предназначенные для стрельбы по наземным и мор. целям снарядами как в обычном и хим. снаряжении, так и с ядерным зарядом. Одним из первых образцов таких систем была 280-мм пушка, изготовленная в США. В 1953 на полигоне в штате Невада при испытании этой пушки стреляли атомным снарядом массой ок. 360 кг. Атомный снаряд разорвался в р-не цели на высоте 150 м от земной поверхности и на расстоянии ок. 11 км от огневой позиции. Мощность взрыва была эквивалентна взрыву 15 тыс. т тротила. В армии США для стрельбы снарядами с ядерным зарядом могут использоваться 203,2-мм гаубицы, 175-мм пушки и 155-мм гаубицы. Ведётся также разработка снарядов с ядерным зарядом к ряду орудий др. калибров. Считают, что сочетание ядерных зарядов большой разрушительной силы и арт. орудий, являющихся наиболее экономичным средством доставки заряда к цели, приведёт к коренному изменению боевых возможностей полевой артиллерии и позволит наиболее эффективно поражать цели.

АТОМНАЯ БОМБА, авиац. бомба с ядерным зарядом. Первые А. б. были изготовлены в США в конце 2-й мировой войны. При взрыве А. б. освобождается огромное количество ядерной энергии. В июле 1945 американцы провели испытание А. б., а затем сбросили 2 бомбы с тротиловым эквивалентом 20 тыс. т на япон. города Хиросима (6 авг.) и Нагасаки (9 авг. 1945). Взрыв А. б. вызвал большие разрушения в этих городах и огромные жертвы среди мирного гражданского населения. В Хиросиме было убито и ранено более 140 тыс. чел., а в Нагасаки ок. 75 тыс. чел. В дальнейшем неск. сот тыс. чел. умерло в результате последствий атомной бомбардировки. Применение А. б. не было вызвано воен. необходимостью. Амер. правящие круги, спекулируя на врем. монополии США в области ядерного оружия, пытались использовать его для устрашения свободолюбивых народов. Однако атомные "секреты" уже в 1947 были раскрыты сов. учёными во главе с акад. И.В.Курчатовым, а в авг. 1949 в СССР произведён экспериментальный взрыв атомного устройства, что привело к полному краху атомного шантажа. Термин "А. б." в наст. время употребляется редко (см. Ядерное оружие, Ядерные боеприпасы и лит. к этим статьям).

"АТОМНАЯ ДИПЛОМАТИЯ", термин, обозначающий внешнеполитич. курс США после окончания 2-й мировой войны, в основе к-рого лежало стремление амер. правящих кругов использовать созданный США арсенал ядерного оружия в качестве средства политич. шантажа и давления на др. страны. "А. д." строилась в расчёте сначала на монопольное обладание США атомным оружием, затем на сохранение амер. превосходства в обл. производства атомного оружия и на неуязвимость терр. США. Проводя "А. д.", США отклоняли все предложения Сов. Союза и др. социа-листич. стран о запрещении использования, прекращении производства и уничтожении запасов ядерного оружия. Создание в СССР атомного (1949) и водородного (1953) оружия, а в последующем и межконтинентальных ракет обрекло на провал "А. д.".

АТОМНАЯ МАССА, атомный вес, значение массы атома, выраженное в атомных единицах массы. Применение особой единицы для измерения А. м. связано с тем, что массы атомов чрезвычайно малы (10-22-10-24 г) и выражать их в граммах неудобно. За единицу А. м. принята 1/12 часть массы изотопа атома углерода 12С. Масса углеродной единицы (сокращённо у. е.) равна (1,660 43± ±0,00031)-10-24 г. Обычно при указании А. м. обозначение "у. е." опускают. Понятие "А. м." ввёл Дж. Дальтон (1803). Он же впервые определил А. м. Обширные работы по установлению А. м. были выполнены в 1-й пол. 19 в. Я. Берцелиусом, позднее Ж. С. Стасом и Т. У. Ричардсом. В 1869 Д. И. Менделеев открыл закон периодич. зависимости свойств элементов от А. м. и на его основе исправил А. м. многих известных в то время элементов (Be, U, La и др.) и, кроме того, предсказал А. м. ещё не открытых тогда Ga, Ge, Sc. После открытия Ф. Содди (1914) явления изотопии (см. Изотопы) понятие "А. м." стали относить и к элементам, состоящим из смеси изотопов, и к отдельным изотопам. Для элементов, к-рые представлены в природе одним изотопом (напр., F, A1), А. м. элемента совпадает с А. м. этого изотопа. Если элемент - смесь изотопов, то его А. м. вычисляют как среднее значение из А. м. отдельных его изотопов, с учётом относит. содержания каждого из них. Так, природный хлор состоит из изотопов 35С1 (75,53% ) и 37С1 (24,47% ), массы атомов к-рых соответственно равны 34,964 и 36,961. А. м. элемента С1 равна: (34,964*75,53+36,961*24,47)/100=35,453

Колебания природного изотопного состава у большинства элементов пренебрежимо малы (менее 0,003%); поэтому каждый элемент имеет практически постоянную А. м., являющуюся одной из важнейших характеристик элемента. Близость к целым числам А. м. элементов, представленных в природе одним изотопом, объясняется тем, что почти вся масса атома заключена в его ядре, а массы составляющих ядро протонов и нейтронов близки к 1. В то же время значения А. м. изотопов (кроме 12С, масса к-рого принята равной 12,00000) никогда точно не равны целым числам. Это объясняется, во-первых, тем, что относительные массы нейтрона и протона немного больше 1 (соответственно 1,008 665 4 и 1,007 276 63), во-вторых, дефектом массы и, в-третьих, небольшим вкладом в общую массу атома массы электронов.

По предложению Дж. Дальтона (1803) единицей А. м. сначала служила масса атома водорода (водородная шкал а). В 1818 Берцелиус опубликовал таблицу А. м., отнесённых к А. м. кислорода, принятой равной 10Э. Система А. м. Берцелиуса господствовала до 1860-х гг., когда химики опять приняли водородную шкалу. Но в 1906 они перешли на кислородную шкалу, по к-рой за единицу А. м. принимали 1/16 часть А. м. кислорода. После открытия изотопов кислорода (16О, 17О, 18О) А. м. стали указывать по двум шкалам: химической, в основе к-рой лежала 1/16 часть средней массы атома природного кислорода, и физической с единицей массы, равной 1/16массы атома 16О. Использование двух шкал имело ряд недостатков, вследствие чего в 1961 перешли к единой, углеродной шкале.

Для нахождения А. м. пользуются различными методами. Часть их основана на экспериментальном определении молекулярной массы к.-л. соединения данного элемента. В этом случае А. м. равна доле молекулярной массы, приходящейся на этот элемент, делённой на число его атомов в молекуле. Точные значения А. м. можно найти, определяя хим. анализом эквивалент химический элемента (А. м. равна произведению эквивалента на валентность). С наибольшей точностью (до 0,001% и выше) А. м. можно определить методом масс-спектроскопии; масс-спектр элемента даёт сведения о количественном изотопном составе и о массах атомов отдельных изотопов, на основании чего легко рассчитать А. м. (см. выше пример с 35С1 и 37С1). А. м. вновь синтезируемых элементов оценивают на основе рассмотрения ядерной реакции их образования.

Совр. значения А. м. приведены в статьях о хим. элементах и в статье Периодическая система элементов Д. И. Менделеева.

Лит.: Менделеев Д. И., Основы химии, 13 изд., т. 1 - 2, М.- Л., 1947; Н е-к р а с о в Б. В., Основы общей химии, т. 1, М., 1965; П о л и н г Л., Общая химия, пер.

с англ., М., 1964; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Д ж у а М., История химии, пер. с итал., М., 1966. С. С. Бердоносов.

АТОМНАЯ ПОДВОДНАЯ ЛОДКА, см. в ст. Атомный флот и Подводная лодка.

АТОМНАЯ СЕКУНДА, единичный интервал времени, равный 9 192 631 770 периодам колебаний цезиевого эталона частоты (см. Квантовые стандарты частоты).

АТОМНАЯ ФИЗИКА, раздел физики, в к-ром изучают строение и состояние атомов. А. ф. возникла в кон. 19 - нач. 20 вв. В 10-х гг. 20 в. было установлено, что атом состоит из ядра и электронов, связанных электрич. силами. На первом этапе своего развития А. ф. охватывала также вопросы, связанные со строением атомного ядра. В 30-х гг. выяснилось, что природа взаимодействий, имеющих место в атомном ядре, иная, чем во внешней оболочке атома, и в 40-х гг. ядерная физика выделилась в самостоят. область науки. В 50-х гг. от неё отпочковалась физика элементарных частиц, или физика высоких энергий.

Предыстория атомной физики: учение об атомах в 17 -19 вв. Мысль о существовании атомов как неделимых частиц материи возникла ещё в древности; идеи атомизма впервые были высказаны др.-греч. мыслителями Демокритом и Эпикуром. В 17 в. они были возрождены франц. философом П. Гассенди и англ. химиком Р. Бойлем.

Представления об атомах, господствовавшие в 17-18 вв., были малоопреде-лимыми. Атомы считались абсолютно неделимыми и неизменными твёрдыми частицами, различные виды к-рых отличаются друг от друга по размеру и форме. Сочетания атомов в том или ином порядке образуют различные тела, движения атомов обусловливают все явления, происходящие в веществе. И. Ньютон, М. В. Ломоносов и нек-рые др. учёные полагали, что атомы могут сцепляться в более сложные частицы - "корпускулы". Однако а'томам не приписывали определённых хим. и физ. свойств. Атомистика ещё носила абстрактный, натурфилософский характер.

В конце 18 - нач. 19 вв. в результате быстрого развития химии была создана основа для количественной разработки атомного учения. Англ. учёный Дж. Дальтон впервые (1803) стал рассматривать атом как мельчайшую частицу хим. элемента, отличающуюся от атомов др. элементов своей массой. По Дальтону, основной характеристикой атома является атомная масса. Хим. соединения представляют собой совокупность "составных атомов", содержащих определённые (характерные для данного сложного вещества) числа атомов каждого элемента. Все хим. реакции являются лишь перегруппировками атомов в новые сложные частицы. Исходя из этих положений, Дальтон сформулировал свой закон кратных отношений (см. Кратных отношений закон). Исследования итал. учёных А. Авогадро (1811) и, в особенности, С. Канниццаро (1858) провели чёткую грань между атомом и молекулой. В 19 в. наряду с хим. свойствами атомов были изучены их оптич. свойства. Было установлено, что каждый элемент обладает характерным оптическим спектром; был открыт спектральный анализ (нем. физики Г. Кирхгоф и Р. Бунзен, I860).

Т. о., атом предстал как качественно своеобразная частица вещества, характеризуемая строго определёнными физ. и хим. свойствами. Но свойства атома считались извечными и необъяснимыми. Полагали, что число видов атомов (хим. элементов) случайно и что между ними не существует никакой связи. Однако постепенно выяснилось, что существуют группы элементов, обладающих одинаковыми хим. свойствами - одинаковой макс. валентностью, и сходными законами изменения (при переходе от одной группы к другой) физ. свойств -темп-ры плавления, сжимаемости и др. В 1869 Д. И. Менделеев открыл периодическую систему элементов. Он показал, что с увеличением атомной массы элементов их хим. и физ. свойства периодически повторяются (рис. 1 и 2).

Периодич. система доказала существование связи между различными видами атомов. Напрашивался вывод, что атом имеет сложное строение, изменяющееся с атомной массой. Проблема раскрытия структуры атома стала важнейшей в химии и в физике (подробнее см. Атомизм).

Возникновение атомной физики. Важнейшими событиями в науке, от к-рых берёт начало А. ф., были открытия электрона и радиоактивности. При исследовании прохождения электрич. тока через сильно разреженные газы были открыты лучи, испускаемые катодом разрядной трубки (катодные лучи) и обладающие свойством отклоняться в поперечном электрич. и магнитном полях. Выяснилось, что эти лучи состоят из быстро летящих отрицательно заряженных частиц, названных электронами. В 1897 англ. физик Дж. Дж. Томсон измерил отношение заряда е этих частиц к их массе т. Было также обнаружено, что металлы при сильном нагревании или освещении светом короткой длины волны испускают электроны (см. Термоэлектронная эмиссия, Фотоэлектронная эмиссия). Из этого было сделано заключение, что электроны входят в состав любых атомов. Отсюда далее следовало, что нейтральные атомы должны также содержать и положительно заряженные частицы. Положительно заряженные атомы - ионы - были действительно обнаружены при исследовании электрич. разрядов в разреженных газах. Представление об атоме как о системе заряженных частиц объясняло, согласно теории голл. физика X. Лоренца, саму возможность излучения атомом света (электромагнитных волн): электромагнитное излучение возникает при колебаниях внутриатомных зарядов; это получило подтверждение при исследовании действия магнитного поля на атомные спектры (см. Зеемана явление). Выяснилось, что отношение заряда внутриатомных электронов к их массе elm, найденное Лоренцом в его теории явления Зеемана, в точности равно значению e/m для свободных электронов, полученному в опытах Томсона. Теория электронов и её экспериментальное подтверждение дали бесспорное доказательство сложности атома.

Представление о неделимости и непре-вращаемости атома было окончательно опровергнуто работами франц. учёных М. Склодовской-Кюри и П. Кюри. В результате изучения радиоактивности было установлено (Ф. Содди), что атомы испытывают превращения двух типов. Испустив а-частицу (ион гелия с положит. зарядом 2е), атом радиоактивного хим. элемента превращается в атом другого элемента, расположенного в перио-дич. системе на 2 клетки левее, напр. атом полония - в атом свинца. Испустив (3-ча-стицу (электрон) с отрицат. зарядом -е, атом радиоактивного хим. элемента превращается в атом элемента, расположенного на 1 клетку правее, напр. атом висмута - в атом полония. Масса атома, образовавшегося в результате таких превращений, оказывалась иногда отличной от атомного веса того элемента, в клетку к-рого он попадал. Отсюда следовало существование разновидностей атомов одного и того же хим. элемента с различными массами; эти разновидности в дальнейшем получили название изотопов (т. е. занимающих одно и то же место в таблице Менделеева). Итак, представления об абс. тождественности всех атомов данного хим. элемента оказались неверными.

Результаты исследования свойств электрона и радиоактивности позволили строить конкретные модели атома. В модели, предложенной Томсоном в 1903, атом представлялся в виде положительно заряженной сферы, в к-рую вкраплены незначительные по размеру (по сравнению с атомом) отрицат. электроны (рис. 3).

Рис. 3. Модель атома Томсона. Точками обозначены электроны, вкрапленные в положительно заряженную сферу.

Они удерживаются в атоме благодаря тому, что силы притяжения их распределённым положит. зарядом уравновешиваются силами их взаимного отталкивания. Томсоновская модель давала известное объяснение возможности испускания, рассеяния и поглощения света атомом. При смещении электронов из положения равновесия возникает "упругая" сила, стремящаяся восстановить равновесие; эта сила пропорциональна смещению электрона из равновесного положения и, следовательно, диполъному моменту атома. Под действием электрич. сил падающей электромагнитной волны электроны в атоме колеблются с той же частотой, что и электрич. напряжённость в световой волне; колеблющиеся электроны, в свою очередь, испускают свет той же частоты. Так происходит рассеяние электромагнитных волн атомами вещества. По степени ослабления светового пучка в толще вещества можно узнать общее число рассеивающих электронов, а зная число атомов в единице объёма, можно определить число электронов в каждом атоме.

Создание Резерфордом планетарной модели атома. Модель атома Томсона оказалась неудовлетворительной. На её основе не удалось объяснить совершенно неожиданный результат опытов англ. физика Э. Резерфорда и его сотрудников X. Гейгера и Э. Марсдена по рассеянию а-частиц атомами. В этих опытах быстрые а-частицы были применены для прямого зондирования атомов. Проходя через вещество, а-частицы сталкиваются с атомами.

При каждом столкновении а-частица, пролетая через электрическое поле атома, изменяет направление движения - испытывает рассеяние. В подавляющем большинстве актов рассеяния отклонения а-частиц (углы рассеяния) были очень малы. Поэтому при прохождении пучка а-частиц через тонкий слой вещества происходило лишь небольшое размытие пучка. Однако очень малая доля а-частиц отклонялась на углы более 90°. Этот результат нельзя было объяснить на основе модели Томсона, т. к. электрич. поле в "сплошном" атоме недостаточно сильно, чтобы отклонить быструю и массивную а-частицу на большой угол. Чтобы объяснить результаты опытов по рассеянию а-частиц, Резерфорд предложил принципиально новую модель атома, напоминающую по строению Солнечную систему и получившую назв. планетарной. Она имеет след. вид. В центре атома находится положительно заряженное ядро, размеры к-рого ( ~ 10- 12 см) очень малы по сравнению с размерами атома (~10-8 см), а масса почти равна массе атома. Вокруг ядра движутся электроны, подобно планетам вокруг Солнца; число электронов в незаряженном (нейтральном) атоме таково, что их суммарный отрицат. заряд компенсирует (нейтрализует) положительный заряд ядра. Электроны должны двигаться вокруг ядра, в противном случае они упали бы на него под действием сил притяжения. Различие между атомом и планетной системой состоит в том, что в последней действуют силы тяготения, а в атоме - электрич. (кулоновские) силы. Вблизи ядра, к-рое можно рассматривать как точечный положит. заряд, существует очень сильное электрическое поле. Поэтому, пролетая вблизи ядра, положительно заряженные а-частицы (ядра гелия) испытывают сильное отклонение (см. рис. 4). В дальнейшем было выяснено (Г. Мозли), что заряд ядра возрастает от одного хим. элемента к другому на элементарную единицу заряда, равную заряду электрона (но с положит. знаком). Численно заряд ядра атома, выраженный в единицах элементарного заряда е, равен порядковому номеру соответствующего элемента в периодич. системе.

Рис. 4. Фотография следов а-частиц в кислороде; короткий след принадлежит атому кислорода, более длинный - а-ча-стице