БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

изоэлектронный ряд. Простейший такой ряд начинается с А. водорода: H,He+,Li2+, Be3+,...; члены этого ряда состоят из ядра и одного электрона.

Порядок значений зарядов ядер различных А. был определён англ. физиком Э. Резерфордом в его первонач. опытах по рассеянию альфа-частиц (1911). Значения Z были надёжно установлены англ, физиком Г. Мозли (1913-14) на основе изучения рентгеновских спектров последовательных элементов в периодич. системе. Кратность заряда ядра А. элементарному заряду е получила объяснение, исходя из представлений о строении ядра: Z равно числу протонов в ядре, протон имеет заряд +е, и полный заряд ядра равен сумме зарядов всех Z протонов, т. е. +Ze.

Масса атома возрастает с увеличением Z. Масса ядра А. приближённо пропорциональна массовому числу А -общему числу протонов и нейтронов в ядре. Масса электрона (0,91 • 10-27 г) значительно меньше (примерно в 1840 раз) массы . протона или нейтрона (1,67-10-24 г), и поэтому масса А. в целом определяется в основном массой его ядра.

А. данного элемента могут отличаться массой ядра (число протонов Z постоянно, число нейтронов А-Z может меняться); такие разновидности А. одного и того же элемента наз. изотопами. Различие массы ядра почти не сказывается на строении их электронных оболочек, зависящем от заряда ядра Z. Химические и большинство физ. свойств (оптич., электрические, магнитные), определяемые строением электронных оболочек, одинаковы или очень близки для всех изотопов данного элемента. Наибольшие отличия в свойствах (и з о т о п и ч е с к и е э ф ф е к т ы) получаются для изотопов водорода (Z = l) из-за большой разницы в массах обычного лёгкого А. водорода (А=1), А. дейтерия (А =2) и А. трития (А=3).

Масса А. приближённо равна массовому числу А и изменяется от 1,67-10-24г для самого лёгкого А. водорода (основного изотопа: Z = 1,A = 1) до примерно 4-10-22г для самых тяжёлых А. трансурановых элементов (Z = 100, А=250).

Наиболее точные значения масс А. могут быть определены методами масс-спектроскопии. Масса А. не равна в точности сумме массы ядра и масс электронов, а несколько меньше - на дефект массы AM = W/c2, где W - энергия образования А. из ядра и электронов, а с - скорость света. Эта поправка - порядка массы одного электрона тe для тяжёлых А., а для лёгких А. пренебрежимо мала (порядка 10-4 массы электрона).

Э н е р г и я а т о м а и е ё к в а н т о в а н и е. Благодаря малым размерам и большой массе ядра его можно приближённо считать точечным и покоящимся в центре масс А. (общий центр масс ядра и электронов находится вблизи ядра, а скорость движения ядра относительно центра масс А. мала по сравнению со скоростями движения электронов). Соответственно А. можно рассматривать как систему, в к-рой N электронов с зарядами -е движутся вокруг неподвижного притягивающего центра. Движение электронов в А. происходит в ограниченном объёме - оно является связанным. Полная внутренняя энергия А. Е равна сумме кинетич. энергий всех электронов Т и потенциальной энергии U - энергии притяжения их ядром и отталкивания их друг от друга (э л е к т ро с т а т и ч е с к о й э н е р г и и взаимодействия электрич. зарядов ядра и электронов, согласно закону Кулона).

В простейшем случае А. водорода один электрон с зарядом -е движется вокруг неподвижного центра с зарядом +е. В этом случае, согласно классич. механике, кинетич. энергия

Т = 1 /2 mv2 = р2/2т, (1) где т - масса, v - скорость, p=mv - количество движения (импульс) электрона. Потенциальная энергия (сводящаяся к энергии притяжения электрона ядром) U = U(r)=-e2/r (2) и зависит только от расстояния r электрона от ядра. Графически функция U(r) изображается кривой (рис. 1, я), неограниченно убывающей при уменьшении r, т. е. при приближении электрона к ядру. Значение U (r) на бесконечности принято за нуль. При отрицат. значениях полной энергии E=Т+U<0 движение электрона является связанным: оно ограничено в пространстве значениями r = rmax,при к-рых Т=0, Е = и(rтax). При положит. значениях полной энергии Е=T+U>0 движение электрона является свободным - он может уйти на бесконечность с энергией E=T = 1/2 mv2, что соответствует ионизованному А. водорода Н+. Нейтральный А. водорода Н представляет, т. о., систему, состоящую из ядра и электрона в связанном состоянии с энергией Е<0.

Полная внутренняя энергия А. Е является его основной характеристикой как квантовой системы - системы, подчиняющейся квантовым законам (см. Квантовая механика). Как показывает огромный экспериментальный материал (см., напр., франка - Герца опыт), А. может длительно находиться лишь в состояниях с определённой энергией - стационарных (неизменных во времени) состояниях.

Существование стационарных состояний - один из основных законов физики микроскопич. явлений - квантовой физики. Внутренняя энергия к в а н-
товой системы, состоящей из связанных микрочастиц (такой системой и является А.), может принимать одно из дискретного (прерывного) ряда значений

Каждому из этих "дозволенных" значений энергии соответствует одно или несколько стационарных квантовых состояний движения. Промежуточными значениями энергии (напр., лежащими между E1 и E2, E2 и Ез и т. д.) система обладать не может, о такой системе говорят, что её энергия квантована, а нахождение возможных значений энергии наз. квантованием энергии. Любое изменение энергии Е связано с квантовым (скачкообразным) п е-р е х о д о м системы из одного стационарного квантового состояния в другое (см. ниже).

Графически возможные дискретные значения энергии (3) А. можно изобразить, по аналогии с потенциальной энергией тела, поднятого на различные высоты (на различные уровни), в виде схемы уровней энергии, где каждому значению энергии соответствует прямая, проведённая на высоте Ei (i = 1, 2, 3, ...); такая схема приведена на рис. 1, б для А. водорода (на рис. 1, а при E<0 оказываются, т. о., возможными лишь определённые ступеньки, соединённые горизонтальным пунктиром с уровнями схемы на рис. 1, б). Самый нижний уровень Ei, соответствующий наименьшей возможной энергии системы, наз. основным, а все остальные (Ei>Ei, i=2,3,4,...)- возбуждёнными, т. к. для перехода на них (перехода в соответствующие стационарные в о з б у ж д ё н н ы е состояния из стационарного о с н о вн о г о с о с т о я н и я) необходимо возбудить систему - сообщить ей извне энергию Ei-Ei.

Квантование энергии А. является следствием волновых свойств электронов. Нельзя считать, что электрон в А. движется как материальная точка по определённой траектории, согласно законам классич. механики. Эти законы справедливы лишь для частиц большой массы (макрочастиц), а для электрона, как микрочастицы, необходимо учитывать,наряду с его корпускулярными свойствами (свойствами частицы), и его волновые свойства. Согласно квантовой механике, движению микрочастицы массы т со скоростью v соответствует длина волны L=h/mv, где h - Планка постоянная. Для электрона в А. L~ 10-8 см, т. е. порядка линейных размеров А., и учёт волновых свойств электрона в А. является необходимым. Связанное движение электрона в А. схоже со стоячей волной, и его следует рассматривать не как движение материальной точки по траектории, а как сложный колебат. процесс. Для стоячей волны в ограниченном объёме возможны лишь определённые значения длины волны L, (и, следовательно, частоты колебаний V). Так как, согласно квантовой механике, v = E/h, отсюда следует, что система, состоящая, подобно А., из связанных микрочастиц, может иметь лишь определённые значения энергии, т. е. энергия квантуется и получается дискретная последовательность уровней энергии - д и с к р е т н ы й э н е р г ет и ч е с к и й с п е к т р. Для А. водорода такая дискретная последовательность получается при Е<0 (см. рис. 1). Свободное, т. е. не ограниченное в пространстве, поступательное движение микрочастицы, напр. двилсение электрона, оторванного от А. (в случае А. водорода - электрона с энергией E>0), сходно с распространением бегущей волны в неограниченном объёме, для к-рой возможны любые значения L (и v). Энергия такой свободной микрочастицы может принимать любые значения, т. е. не квантуется, и получается непрерывная последовательность уровней энергии - непрерывный энергетический спектр. Для А. водорода такая непрерывная последовательность, соответствующая ионизованному А., получается при E>0. Значение Eоо =0 соответствует границе ионизации, а разность Еоо-E1=Eион представляет энергию ионизации: для А. водорода она равна 13,6 эв.

Р а с п р е д е л е н и е э л е к тр о н н о й п л о т н о с т и. Состояние электрона в А. можно характеризовать распределением в пространстве его электрич. заряда с нек-рой плотностью - распределением электронной плотности. При этом электроны рассматриваются наглядным образом, как "размазанные" в пространстве и образующие "электронное облако". Такая модель правильнее характеризует электроны в А., чем модель точечного электрона, движущегося, согласно теории Бора (см. Атомная физика), по строго определённым орбитам. Вместе с тем боровским орбитам можно сопоставить определённые распределения электронной плотности. Для основного уровня энергии Ei электронная плотность концентрируется вблизи ядра; для возбуждённых уровней энергии Е2 ,Е3 , Е4 ,... она распределяется на всё больших средних расстояниях от ядра (что соответствует возрастанию размера орбит в теории Бора). В сложном А. эти электроны группируются в оболочки, окружающие ядро на различных расстояниях и характеризующиеся определёнными распределениями электронной плотности. Прочность связи электронов в более внешних оболочках меньше, чем во внутренних, и слабее всего электроны связаны в самой внешней оболочке, обладающей наибольшими размерами, к-рые и определяют размеры А. в целом. При ионизации А. теряет внешние электроны; размеры положит. ионов тем меньше размеров нейтрального А., чем выше кратность иона. Наоборот, размеры отрицат. ионов больше размеров нейтрального А.

Учёт спина электрона и спина ядра. В теории А. весьма существен учёт спина электрона - его собственного (спинового) момента количества движения, с наглядной точки зрения соответствующего вращению электрона вокруг собственной оси (если электрон рассматривать как частицу малых размеров). Со спином электрона связан его магнитный момент. Поэтому в А. необходимо учитывать, наряду с элект-ростатич. взаимодействиями (см. выше), и магнитные взаимодействия, определяемые спиновым магнитным моментом, а также орбитальным магнитным моментом, связанным с движением электрона вокруг ядра; магнитные взаимодействия малы по сравнению с электростатическими. Наиболее существенное влияние спина проявляется в сложных А.: от спина электронов зависит заполнение электронных оболочек А. определённым числом электронов (см. ниже).

Ядро в А. также может обладать собственным механич. моментом - ядерным спином, с к-рым связан небольшой ядерный магнитный момент (в сотни и тысячи раз меньший электронного магнитного момента), а в нек-рых случаях и т. н. квадрупольный электрич. момент (см. Моменты атомных ядер). Это приводит к дополнительным очень малым взаимодействиям ядра и электронов, обусловливающим дополнительное расщепление уровней энергии А.- т. н. сверхтонкую структуру (малую по сравнению с тонкой структурой).

Квантовые состояния атома водорода. Важнейшую роль в квантовой теории А. играет теория простейшего одно-электронного А., состоящего из ядра с зарядом + Ze и электрона с зарядом -е, - теория А. водорода Н и в о д о-родоподобных ионов Не+, Li2+, Ве3+,.._(изоэлектронного ряда, см. выше), наз. обычно теорией А. водорода. Методами квантовой механики можно получить точную и полную характеристику состояний электрона в одноэлектронном А. Задача о сложных (м н о г о э л е к тр о н н ы х) атомах решается лишь приближённо; при этом чсходят из результатов решения задачи об одноэлектронном А.

Уровни энергии А. водорода и водородоподобных ионов. Энергия одноэлектронного А. (без учёта спина электрона) равна

(4)

целое число n = 1, 2, 3, ... определяет возможные дискретные значения энергии - уровни энергии; его называют главным квантовым числом. R - Ридберга постоянная, равная 13,6 эв. Уровни энергии А. водорода на схеме рис. 1, б построены для Z = l согласно формуле (4); они сгущаются (сходятся) к границе ионизации соответствующей п = °° (уровни энергии с n>5 на схеме не показаны). Для водородоподобных ионов изменяется (в Z2 раз) лишь масштаб энергий. Энергия ионизации водородоподобного А. (энергия связи электрона в таком А.) равна (в эв)

что даёт для Н, Не+, Li2+,... значения 13,6 эв, 54,4 эв, 122,4 эв, ...

Основная формула (4) соответствует выражению U (r) =-Ze2/r для потенциальной энергии электрона, притягиваемого ядром с зарядом +Ze [см. (2) и рис. 1, а для случая Z = l]. Эта формула была впервые выведена Н. Бором в его теории А. (1913) путём рассмотрения движения электрона вокруг ядра по круговой орбите радиуса r. Уровням энергии (4) соответствуют орбиты радиуса

(6)

где постоянная ао = 0,529- 10- 8см =0,529А - радиус первой круговой орбиты А. водорода, соответствующей его основному уровню (этим боровским радиусом часто пользуются в качестве удобной единицы для измерений длин в атомной физике). Радиус орбит пропорционален квадрату главного квантового числа n2 и обратно пропорционален Z; для водородоподобных ионов масштаб линейных размеров уменьшается в Z раз по сравнению с А. водорода.

Характеристика квантовых состояний атома водорода. Согласно квантовой механике, состояние А. водорода полностью определяется дискретными значениями ч е т ы р ё х физ. величин: энергии E; о р б и т а л ь н о г о м о м е н т а М, (момента количества движения электрона относительно ядра); проекции Мi орбитального момента на направление z (выбранное произвольно в пространстве); проекции Msz спинового момента (собственного момента количества движения электрона Ms). Возможные значения этих физ. величин, в свою очередь, определяются соответствующими квантовыми числами:

1)Е - по закону (4) - главным квантовым числом n = l, 2, 3, ...;

2)М - по закону Мi2 = (h2/4п2) 1(1 + 1)



[при , Mi2 = (h2/4п2)/2] - орбитальным (или азимутальным) квантовым числом i=0,1, 2, ..., n-1;

3) Мiz - по закону Мiz = (h/2п)miz - магнитным орбитальным квантовым числом mi = i, i-1, ..., -i;

4) Мsz - по закону Мsz =(h/2)ms - магнитным спиновым квантовым числом

№=1/2; -1/2 .

Значения квантовых чисел n, I, mi, ms и характеризуют состояние электрона в А. водорода. Энергия А. водорода зависит только от n, и уровню энергии с заданным n соответствует ряд состояний, отличающихся значениями l, тi и ms. Состояния с заданными значениями n и I принято обозначать как Is, 2s, 2p, 3s, ..., где цифры указывают значение n, a буквы s, р, d, f (дальше по лат. алфавиту)- соответственно значения l=0, 1, 2, 3, ... При заданных п и I число различных состояний равно 2(2l + 1) - числу комбинаций значений т: и ms (первое принимает 2l + 1 значение, второе - 2 значения). Общее число различных состояний с заданными n и l при учёте, что l может принимать значения от О до n-1, получается равным

(7)

Т. о., каждому уровню энергии А. водорода соответствует 2, 8, 18, ..., 2п2 (при я = 1, 2, 3, ...) различных стационарных квантовых состояний (рис. 2). Если уровню энергии соответствует лишь одно квантовое состояние, то его называют невырожденным, если два или более - вырожденным (см. Вырождение), а число таких состояний g наз. степенью или кратностью вырождения (для невырожденных уровней энергии g = 1). Уровни энергии А. водорода являются вырожденными, а их степень вырождения gп - 2п2.

Для различных состояний А. водорода получается и различное распределение электронной плотности. Оно зависит от квантовых чисел п, l и |mi |. При этом электронная плотность для s-состояний (l=0) отлична от нуля в центре, т. е. в месте нахождения ядра, и не зависит от направления (сферически симметрична), а для остальных состояний (l>0) она равна нулю в центре и зависит от направления. Распределение электронной плотности для состояний А. водорода с n = l, 2 и 3 показано на рис. 3 (оно получено фотографированием спец. моделей); размеры "электронного облака" растут примерно пропорционально n2 (масштаб на рис. 3 уменьшается при переходе от n = l к n=2 и от n=2 к n=3), что соответствует увеличению радиуса орбит по формуле (6) в теории Бора.

Квантовые состояния электрона в водородоподобных ионах характеризуются теми же четырьмя квантовыми числами и, l, тi и ms, что и в А. водорода. Сохраняется и распределение электронной плотности, только она увеличивается в Z раз и на рис. 3 масштабы нужно уменьшить также в Z раз. Соответственно уменьшаются и размеры орбит.


Действие внешних полей на уровни энергии атома водорода Во внешнем электрич. и магнитном полях А. как электрич. система приобретает дополнит. энергию. Электрическое поле поляризует А.- смещает электронное облако относительно ядра, а магнитное поле ориентирует определённым образом магнитный момент А., связанный с движением электрона вокруг ядра (с орбитальным моментом М,) и его спином. Различным состояниям А. водорода с той же энергией En во внешнем поле соответствует различная дополнит. нергия ДE, и вырожденный уровень энергии Еп расщепляется на ряд подуровней (рис. 4).

Рис. 3. Распределение электронов плотности для состояний атома водорода с n=1,2,3 m=|mi|

Как расщепление в электрич. поле-Штарка явление, так и расщепление в магнитном поле - Зеемана явление, для уровней энергии А. водорода пропорциональны напряжённости полей.
Рис. 4. Расщепление уровня энергии во внешнем магнитном поле.



К расщеплению уровней энергии приводят и малые магнитные взаимодействия внутри А. Для А. водорода и водородоподобных ионов имеет место спин-орбитальное взаимодействие - взаимодействие спинового и орбитального моментов электрона, не учитываемое при выводе основной формулы (4); оно обусловливает т. н. то н-кую структуру уровней энергии- расщепление возбуждённых уровней Еп (при n>1) на подуровни. Наиболее точные исследования тонкой структуры методами радиоспектроскопии показали наличие т. н. сдвиг