БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ти, образуя акустич. зоны слышимости и зоны молчания; происходит рассеяние и ослабление звука на турбулентных неоднородностях, сильное поглощение звука на больших высотах и т. д.

Сложную обратную задачу приходится решать при акустич. зондировании атмосферы. Распределение температуры и ветра на больших высотах определяют по измерениям времени и направления прихода звуковых воли от наземных взрывов или взрывов бомб, сбрасываемых с ракеты. При исследовании турбулентности определяют темп-ру и скорость ветра, измеряя время распространения звука на небольших расстояниях; для получения необходимой точности пользуются ультразвуковыми частотами.

Большое значение получила проблема распространения промышл. шумов, в особенности ударных волн, возникающих при движении сверхзвуковых реактивных самолётов. Если атм. условия благоприятствуют фокусировке этих волн, то у земной поверхности давления могут достичь значений, опасных для сооружений и здоровья людей.

В атмосфере наблюдаются различные звуки естеств. происхождения. Длительные раскаты грома происходят вследствие большой длины грозового разряда, а также потому, что из-за рефракции звуковая волна распространяется по различным путям и приходит с различными запаздываниями. Нек-рые геофизич. явления - полярные сияния, магнитные бури, мощные землетрясения, ураганы, морские волнения - являются источниками звуковых и особенно инфразвуковых волн. Их исследование важно не только для геофизики, но, напр., для заблаговременного штормового оповещения. Разнообразные слышимые шумы вызываются или срывом вихрей с различных препятствий (свист ветра) или колебаниями к.-л. предметов в потоке воздуха (гудение проводов, шелест листьев и т. п.).

Лит.: Красильников В.А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М., 1960; Блохинцев Д. И., Акустика однородной движущейся среды, М.- Л., 1946.

В. М. Бовшеверов.

АТМОСФЕРНАЯ ОПТИКА, раздел физики атмосферы, в к-ром изучаются оптич. явления, возникающие при прохождении света в атмосфере. Сюда относятся не только такие красочные явления, как зори, радуги, изменения цвета неба, а и менее заметные, но очень важные для практики явления, как рассеяние и излучение атмосферой видимой и невидимой радиации, поляризация небесного света, видимость предметов и т. д. А. о. составляет часть физич. оптики; она тесно переплетается с оптикой коллоидов и аэрозолей, планетных атмосфер, моря, с радиационной теплопередачей и др. Важные для А. о. результаты были получены при решении проблем физ. химии, астрофизики, океанологии, техники, а методы и результаты А. о. часто находят применение в этих науках.

Изучение оптич. свойств воздуха, моря и суши составляет прямые задачи А. о. Обратные задачи А. о. - разработка оптич. методов зондирования, т. е. определения по измеренным оптич. свойствам воздуха, моря и суши других их физ. характеристик.

Оптич. явления в нижних и верхних слоях атмосферы (слой озона и выше) различны. В верхних слоях под влиянием солнечного излучения происходят гл. обр. фотохим. реакции. Возникающие при этом возбуждённые частицы высвечивают запасённую энергию (полярные сияния, свечение ночного неба и др.). Изучением этих явлений занимается аэрономия. В данной статье они не рассматриваются.

Интерес к оптич. явлениям в атмосфере возник очень давно. Цвет неба и облаков, зори, ложные солнца и т. д. с давних пор считались предвестниками погоды. Таких примет довольно много и одно время считалось даже, что их изучение и есть главная задача А. о. Этой точки зрения придерживался рус. геофизик П. И. Броунов (30-е гг. 20 в.). Однако более подробные исследования показали, что хотя между оптическими и др. физ. явлениями в атмосфере связь несомненно существует, но часто она бывает очень сложной и неоднозначной; оптич. признаки погоды иногда противоречат друг другу. Постепенно стало ясно, что найти связь между оптич. явлениями и погодой можно, лишь изучая природу оптич. явлений и одновременно проникая в механизм физ. явлений, вызывающих изменения погоды.

Первые попытки объяснить синий цвет неба относятся к 16 в. Леонардо да Винчи объяснял синеву небесного свода тем, что белый воздух на тёмном фоне мирового пространства кажется синим. Л. Эйлер считал (1762), что "сами частицы воздуха имеют синеватый оттенок и в общей массе создают интенсивную синеву". В нач. 18 в. И. Ньютон объяснял цвет неба интерференционным отражением солнечного света от мельчайших капель воды, всегда взвешенных в воздухе. В 1809 франц. физик Д. Араго открыл, что свет неба сильно поляризован (см. Поляризация света).

Первое правильное объяснение синего цвета неба дал англ. физик Рэлей (Дж. У. Стрётт) (1871, 1881). По теории Рэлея цветные лучи, образующие солнечный спектр, рассеиваются молекулами воздуха пропорционально Л-4 (где Л-длина световой волны). Синие лучи рассеиваются, примерно, в 16 раз сильнее, чем красные. Поэтому цвет неба (рассеянный солнечный свет) - синий, а цвет Солнца (прямой солнечный свет), когда оно низко над горизонтом и лучи его проходят большой путь в атмосфере,- красный. При этом рассеянный свет должен быть сильно поляризован, а под углом 90° от направления на Солнце поляризация должна быть полной.

Измерения яркости, цвета и поляризации света неба подтвердили теорию Рэлея. Но в 1907 рус. физик Л. И.Мандельштам показал, что если тело, в том числе и воздух, строго однородно, то лучи, рассеянные отдельными молекулами, должны в результате взаимной интерференции гасить друг друга так, что никакого рассеяния вообще наблюдаться не будет. В действительности из-за хаотич. теплового движения в среде всегда возникают флуктуации плотности (т. е. случайно расположенные области сгущений и разрежений), на к-рых и происходит рассеяние. Строгая теория флуктуационного рассеяния, разработанная польск. физиком М. Смо-луховским (1908) и А. Эйнштейном (1910), привела к тем же формулам, к-рые были ранее получены в молекулярной теории Рэлея. Однако все эти работы не учитывали запылённости атмосферы. Воздух, даже самый чистый,- высоко в горах, в Арктике и Антарктике - всегда засорён органич. и минеральной пылью, частицами дыма, капельками воды или растворов. Эти частицы очень малы (радиус ок. 0,1 "м), их масса, а следовательно, и вес ничтожны, поэтому они так медленно падают на Землю, что малейший ток воздуха снова вздымает их вверх. Т. к. воздух непрерывно перемешивается, то в атмосфере всегда парит как бы сеть из мельчайших пылинок и капель, особенно густая в нижних приземных слоях. Это атмосферный аэрозоль, к-рый и является главной причиной мутности воздуха. Он уменьшает дальность видимости в реальной атмосфере, по сравнению с идеальной, приблизительно в 20 раз. Кроме аэрозоля, большую роль в оптич. явлениях ватмосфере играют водяной пар, углекислый газ и озон, хотя они составляют всего несколько % от объёма газов, из к-рых состоит воздушная смесь. Только эти газы поглощают солнечное и земное излучение и сами излучают радиацию.

В рассеянии света в атмосфере решающее значение имеет аэрозоль. Немецкий физик Г. Ми (1908) построил теорию рассеяния света частицей произвольного размера, которой широко пользуются в А. о. Эта теория была существенно развита и дополнена сов. учёными В. В. Шулейки-ным. (1924), В. А. Фоком (1946), К. С. Шифриным (1951) и голл. учёным ван Хюлстом (1957). Расчёты показывают, что характер рассеяния зависит от отношения радиуса частицы а к длине волны X и от вещества частицы. Малые частицы (а/л"1) ведут себя так же, как молекулы в теории. Рэлея, но чем больше частицы, тем слабее зависимость рассеяния от длины волны. Большие частицы (a/л"1) рассеивают свет нейтрально - все волны одинаково. Это, в частности, относится к каплям облаков, радиусы к-рых в 10-20 раз больше длины волны видимого света. Именно поэтому облака имеют белый цвет. По этой же причине небо становится белесоватым, если воздух пыльный или содержит капельки воды. В исследование яркости и поляризации неба большой вклад внесли сов. учёные В. Г. Фесенков, И. И. Тихановский, Е. В. Пясковская-Фесенкова, а в исследование прозрачности облаков, туманов, ниж. слоев атмосферы - А. А. Лебедев, И. А. Хвостиков, С. Ф. Родионов, амер. учёные Д. Стрет-тон и Г. Хаутон, французские учёные Э. и А. Васси, Ж. Брикар.

Наряду с эксперимент. работами создавались также методы расчёта распределения яркости и поляризации по небу, для чего необходимо учитывать многократность рассеяния света и отражения от земной поверхности. Для этого случая рус. физиком О. Д. Хвольсоном (1890) было предложено уравнение переноса излучения. Для безоблачного неба влияние многократного рассеяния не очень велико, но для облаков, к-рые представляют собой сильно мутные среды, это - основной фактор, без к-рого нельзя правильно рассчитать прозрачность облаков, отражение и световой режим внутри них. Большой вклад в разработку методов решения уравнения переноса внесли сов. учёные В. А. Амбарцумян (1941-43), В. В. Соболев (1956), Е. С. Кузнецов (1943-45) и индийский учёный С. Чанд-расекар (1950).

Видимость предметов обусловлена прежде всего прозрачностью воздуха, а также их отражательными свойствами. Отражение диффузно, т. е. рассеяно во все стороны (за исключением отражения от поверхности спокойной воды) и для разных поверхностей происходит по-разному, в результате чего (для несамосветящихся тел) возникает яркостный контраст предмета с фоном. Если контраст больше нек-рого порогового значения, то предмет виден; если меньше, то предмет теряется на общем фоне. Дальность видимости предмета зависит от прозрачности воздуха и от освещённости (в сумерки и днём порог различения неодинаков). Видимость (прозрачность атмосферы) входит в число основных метеорологич. элементов, наблюдения над к-рыми ведут метеорологич. станции. Исследование условий, влияющих на горизонтальную и наклонную видимость (на фоне неба илиЗемли) - важная прикладная задача А. о. В её решении значит. результаты получили сов. учёные В. В. Шаронов, Н. Г. Болдырев, В. А. Берёзкин, В. А. Фаас, нем. учёный X. Кошмидер, канад. учёный Д. Мидлтон.

Большое значение имеет изучение условий распространения в атмосфере невидимых инфракрасных волн длиной 3- 50 мкм, к-рые обусловливают лучистую передачу тепла (механизм её состоит в поглощении и последующем переизлучении). Очень важны прямые измерения в свободной атмосфере, к-рые могут быть выполнены с самолётов или с искусств. спутников Земли (ИСЗ). В исследовании лучистой теплопередачи существенные результаты были получены советскими учёными А. И. Лебединским, В. Г. Кастровым, К. Я. Кондратьевым, Б. С. Непорентом, Е. М. Фейгельсоном и американскими - Д. Хоуардом и Р. Гуди.

При постановке обратных задач А. о. возникают две трудности: во-первых, нужно установить, что в оптич. информации содержатся нужные данные, и, во-вторых, - указать способ их извлечения и необходимую точность измерений. В. Г. Фесенков ещё в 1923 показал, что по изменению яркости сумеречного неба можно судить о строении атмосферы на высотах более 30 км. Через 30 лет сведения о строении стратосферы и ионосферы, полученные непосредственно с помощью ракет, подтвердили данные сумеречного метода. В развитие сумеречного метода внесли значительный вклад сов. учёные Г. В. Розенберг, Н. М. Штауде. Удалось разработать неск. методов, позволяющих исследовать строение мутных сред по особенностям их светорассеяния, которые нашли применение не только в геофизике. Наибольший интерес вызывает разработка методов зондирования атмосферы с ИСЗ для определения темп-ры земной поверхности или облаков по инфракрасному излучению, приходящему на спутник. Исследуется также способ определения вертикальных профилей темп-ры и влажности по характеру приходящего излучения. В разработке этого метода важные результаты получены сов. учёным М. С. Малкевичем, американским - Л. Капланом и японским - Г. Ямамото.

Работу по развитию и согласованию исследований в области А. о. проводит Академия наук СССР совместно с Главным управлением гидрометеорологической службы СССР.

Лит.: Броунов П.И., Атмосферная оптика, М., 1924; Ш и ф р и н К.С., Рассеяние света в мутной среде, М.- Л., 1951; Пясковская-Фесенкова Е.В., Исследование рассеяния света в земной атмосфере, М., 1957; Розенберг Г. В., Сумерки, М., 1963; Кондратьев К. Я., Актинометрия, Л., 1965. К. С. Шифрин.

АТМОСФЕРНОЕ ДАВЛЕНИЕ, гидростатическое давление, оказываемое атмосферой на все находящиеся в ней предметы. А. д.- существенная характеристика состояния атмосферы; в каждой точке атмосферы оно определяется весом вышележащего воздуха. С высотой А. д. убывает; зависимость А. д. от высоты выражается барометрической формулой. Измеряется А. д. барометром. А. д. выражают в миллибарах (мбар), в ньютонах на м2 (и/м2) или высотой столба ртути в барометре в мм, приведённой к 0°С и норм, (на уровне моря и широте 45°) величине ускорения силы тяжести.

За норм. А. д. принимают 760 мм рт. ст. = 1013,25 мбар = 101325 н/м2. На высоте 5 км А. д. равно прибл. половине А. д. у земной поверхности.

На земной поверхности А. д. изменяется от места к месту и во времени. Особенно важны непериодич. изменения А. д., связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления - антициклонов и относительно быстро перемещающихся огромных вихрей - циклонов, в к-рых господствует пониженное давление. Отмеченные до сих пор крайние значения А. д. (на уровне моря): 808,7 и 684,0 мм рт. ст. Однако, несмотря на большую изменчивость, распределение средних месячных значений А. д. на поверхности земного шара каждый год примерно одно и то же. Среднегодовое А. д. понижено у экватора и имеет минимум под 10° с. ш. Далее А. д. повышается и достигает максимума под .30-35° сев. и юж. широты; затем А. д. снова понижается, достигая минимума под 60 - 65°, а к полюсам опять повышается. На это широтное распределение А. д. существенное влияние оказывает время года и характер распределения материков и океанов. Над холодными материками зимой возникают области высокого А. д. Таким образом, широтное распределение А. д. нарушается, и поле давления распадается на ряд областей высокого и низкого давлений, к-рые наз. центрами действия атмосферы. С высотой горизонтальное распределение давления становится более простым, приближаясь к широтному. Начиная с высоты ок. 5 км А. д. на всём земном шаре понижается от экватора к полюсам.

В суточном ходе А. д. обнаруживаются 2 максимума: в 9-10 ч и 21-22 ч, и 2 минимума: в 3-4 ч и 15-16 ч. Особенно правильный суточный ход оно имеет в тропич. странах, где дневное колебание достигает 2,4 мм рт. ст., а ночное-1,6 мм рт. ст. С увеличением широты амплитуда изменения А. д. уменьшается, но вместе с тем становятся более сильными непериодич. изменения А. д.

Лит.: X р г и а н А. X., Физика атмосферы, 2 изд., М., 1958, гл. V; Б у р г е с с Э., К границам пространства, пер. с англ., М., 1957.

АТМОСФЕРНОЕ ЭЛЕКТРИЧЕСТВО,1) совокупность электрич. явлений и процессов в атмосфере; 2) раздел физики атмосферы, изучающий электрические явления в атмосфере и её электрич. свойства. При исследовании А. э. изучают электрич. поле в атмосфере, её ионизацию и проводимость, электрич. токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и мн. др. Все проявления А. э. тесно связаны между собой и на их развитие сильно влияют метеорологич. факторы - облака, осадки, метели и т. п. К области А. э. обычно относят процессы, происходящие в тропосфере и стратосфере.

Начало А. э. как науке было положено в 18 в. амер. учёным Б. Франклином, экспериментально установившим электрич. природу молнии, и рус. учёным М. В. Ломоносовым - автором первой гипотезы, объясняющей электризацию грозовых облаков. В 20 ь. были открыты проводящие слои атмосферы, лежащие на высоте более 60-100 км (ионосфера, магнитосфера Земли); установлена электрическая природа полярных сияний и обнаружен ряд др. явлений, изучению к-рых посвящены соответствующие науки, выделившиеся из А. э. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами. Две основные совр. теории А. э. были созданы англ. учёным Ч. Вильсоном и сов. учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрич. поле атмосферы объясняется всецело электрич. явлениями, происходящими в тропосфере,- поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрич. процессов.

А. э. данного района зависит от глобальных и локальных факторов. Районы, где отсутствуют скопления аэрозолей и источники сильной ионизации, рассматриваются как зоны "хорошей", или "ненарушенной" погоды, здесь преобладают глобальные факторы. В зонах "нарушенной" погоды (в районах гроз, пыльных бурь, осадков и др.) преобладают локальные факторы.

Э л е к т р и ч е с к о е п о л е а т м о с ф е р ы. В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрич. поле. Исследования в зонах "хорошей" погоды, начатые в 19 в., показали, что у земной поверхности существует стационарное электрич. поле с напряжённостью Е, в среднем равной ок. 130 в/м. Земля при этом имеет отрицат. заряд, равный ок. 3-105 к.аатмосфера в целом заряжена положительно. Однако при осадках и особенно грозах, метелях, пылевых бурях и т. п. напряжённость поля может резко менять направление и величину, достигая иногда 1000 в/м. Наибольшие значения Е имеет в средних широтах, а к полюсам и экватору убывает. В зонах "хорошей" погоды Е с высотой в целом уменьшается, напр. над океанами. Вблизи земной поверхности, в т. н. слое перемешивания толщиной 300-3000 м, где скапливаются аэрозоли, Е может с высотой возрастать (рис. 1). Выше слоя перемешивания Е убывает с высотой по экспоненциальному закону и па высоте 10 км не превышает неск. е/м. Это убывание Е связано с тем, что в атмосфере содержатся положит. объёмные заряды, плотность к-рых также быстро убывает с высотой.

Рис. 1. Изменение напряжённости электрич. поля Е с высотой Н. 1 - Ленинград; 2 -