БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

дств перспективны бессальниковые А. с экранированным электродвигателем, не требующим уплотнения. Ротор этого электродвигателя насажен непосредственно на вал мешалки и накрыт герметичным тонкостенным экраном из немагнитного материала, не препятствующего проникновению магнитных силовых линий от статора электродвигателя к ротору.

А. применяются в хим. пром-сти (производство гербицидов, органич. полупродуктов и красителей, в процессах синтеза); в гидрометаллургии (выщелачивание с последующим восстановлением из растворов цветных и драгоценных металлов, редких элементов): в резин, пром-сти (вулканизация технич. изделий); в консервной пром-сти (стерилизация консервов); в пром-сти стройматериалов. А. широко используется также в медицине (см. Автоклав в медицине).

Лит.: Корндорф Б. А., Техника высоких давлений в химии, Л.- М., 1952; Плановский А. Н., Гуревич Д. А., Аппаратура промышленности полупродуктов и красителей, [2 изд.], М., 1961. Г.М.Векслер, В.А.Зайцев.

АВТОКЛАВ в медицине, аппарат для стерилизации паром под давлением хирургич. перевязочного материала, инструментов, большинства питательных сред для выращивания микроорганизмов, для обеззараживания инфицированного материала, операционных халатов и т. п. Основная часть А.- герметичная водопаровая камера для получения водяного пара необходимой темп-ры и давления. Внутри водопаровой камеры установлена стерилизац. камера, в к-рую помещают стерилизуемый материал. В свободное пространство между камерами наливают воду. При нагреве А. пар поднимается между стенками камер, проникает в стерилизац. камеру сквозь отверстия в верхней части и поднимает в ней давление и темп-ру, необходимые для уничтожения микроорганизмов в стерилизуемом материале. А. снабжён металлич. кожухом, подставкой и изолирован изнутри слоем асбеста (см. рис.). Применяют стационарные и переносные А.

Автоклав медицинский (до 3 атм): 1 - крышка; 2 - резиновая прокладка; 3 - отверстия для поступления пара; 4 - водопаровая камера; 5 - металлический кожух; 6 - стерилизационная камера; 7 - слой асбеста; 8 и 14 - спускные краны; 9 - подставка; 10 и 12 - краны для заправки воды; 11 - водоуказательное стекло; 13 - манометр; 15 - предохранительный клапан.

АВТОКЛАВНЫЕ МАТЕРИАЛЫ, материалы и изделия автоклавного твердения, строит, материалы и изделия, получаемые из смеси извести и кварцевого песка и твердеющие при повыш. темп-ре и давлении. В процессе изготовления А. м. подвергаются термической обработке (запа-риванию) в автоклавах при t 175- 200 "С насыщенным водяным паром под давлением 0,9-1,6 Мн/м2(9-16 кгс/см2) в течение 8-16 ч. В результате физ.-хим. взаимодействия компонентов (извести, песка и воды) образуются гидросиликаты кальция, обусловливающие твердение и монолитность материала. Способ изготовления автоклавного силикатного кирпича из смеси (по массе) извести (8-10% ) и кварцевого песка (90-92% ) впервые был предложен немецким учёным В. Михаэлисом в 1880.

В России изготовление силикатного кирпича началось в конце 19 в. В нач. 30-х гг. в СССР было освоено производство автоклавных стеновых известково-песчаных и известково-шлако-песчаных камней и блоков (сплошных и пустотелых), известково-трепельного фибролита, облицовочных плит и др. изделий. В эти же годы разработана технология и организовано производство бетонных камней на основе портландцемента (чем положено начало использованию цемента в производстве А. м.), а также ячеистого бетона из смеси молотой негашёной извести, молотого кварцевого песка и пе-но- или газообразователей (в виде т. н. пеносиликата и газосиликата) и изделий из них с объёмной массой от 400 до 1200 кг/м3 и более. В 50-е годы в СССР была разработана технология изготовления крупноразмерных силикатобетонных изделий автоклавного твердения с пределом прочности при сжатии до 50 Мн/м2 (500 кгс/см2) и более; такие изделия по своим свойствам равноценны железобетонным, а себестоимость их на 10-20% ниже. Эта работа удостоена Ленинской пр. (1962). Советскими учёными открыта также возможность замены извести и портландцемента в произ-ве автоклавных изделий молотыми шлаками (металлур-гич., топливными и др.), нефелиновым шламом и нек-рыми золами (содержащими до 20-50% окиси кальция в свободном виде, а также в виде силикатов и алюминатов, способных к гидратации при термообработке в автоклавах). На основе автоклавной обработки в СССР организовано массовое произ-во крупноразмерных элементов (стеновых блоков и панелей) из тяжёлого, лёгкого и ячеистого бетонов с объёмной массой от 300-500 до 2000-2400 кг/м3, теплоизоляционных, облицовочных и др. материалов и изделий. А. В. Вплженский.

АВТОКОД, простой язык программирования; система команд нек-рой условной машины, способной в качестве элементарных выполнять значительно более сложные операции, чем данная конкретная ЭВМ. Наиболее распространены А. типа 1:1, в к-рых осн. элемент языка (оператор, строка) при переводе на языке цифровой вычислит, машины (ЦВМ) преобразуется в одну команду. С помощью А. типа 1:1 можно составить любую программу, к-рая возможна в системе команд вычислит, машины. Программирование на А. типа 1:1 эквивалентно программированию на языке ЦВМ, однако более удобно для человека и ускоряет работу примерно в 3 раза. А., отличные от А. типа 1:1, ориентируются не на систему команд ЦВМ, а на класс решаемых задач, значительно ускоряют работу по программированию, но не дают возможности получить программу такого же высокого качества, какое в принципе достижимо при программировании на языке ЦВМ или на А. типа 1:1. В А. (не типа 1:1) осн. элемент языка (оператор) при переводе в код ЦВМ преобразуется, как правило, в совокупность неск. команд. Указать резкую границу между А. и другими (более сложными) языками программирования невозможно. Примерами А. типа 1:1 могут служить А., разработанные в СССР для ЦВМ БЭСМ-6 иУрал;. Пример более сложного А.- А. типаИнженер; для ЦВМ ч Минск;.

Алгоритм, заданный на А., перерабатывается в программу ЦВМ с помощью т. н. программы-транслятора, к-рая может по заданию программиста производить также простейшее распределение памяти, автоматич. компоновку программ из отд. частей с использованием библиотеки подпрограмм и др. операции.

Во многих системах автоматич. программирования А. служит промежуточным языком при переводе с другого языка программирования в код ЦВМ.

Лит. см. при ст. Язык программирования. В. И. Собелъман.

АВТОКОЛЕБАНИЯ, незатухающие колебания, которые могут существовать в к.-л. системе при отсутствии переменного внеш. воздействия, причём амплитуда и период колебаний определяются свойствами самой системы. Этим А. отличаются от вынужденных колебаний, амплитуда и период к-рых определяются характером внеш. воздействия (приставкаавто; и указывает на то, что колебания возникают в самой системе, а не навязываются внеш. воздействием). А. отличаются и от свободных колебаний (напр., колебаний свободно подвешенного маятника, колебаний силы тока в элект-рич. контуре) тем, что, во-первых, свободные колебания постепенно затухают, во-вторых, их амплитуда зависит от первоначального ;толчка, создающего эти колебания. Примерами А. могут служить колебания, совершаемые маятником часов, колебания струны в смычковых или столба воздуха в духовых муз. инструментах, электрич. колебания в лампово'м генераторе (см. Генерирование электрических колебаний). Системы, в к-рых возникают А., наз. автоколебательными.

Автоколебат. системы во многих случаях можно разделить на 3 осн. элемента: 1) колебательную систему (в узком смысле); 2) источник энергии, за счет к-рого поддерживаются А., и 3) устройство, регулирующее поступление энергии из источника в колебат. систему. Эти 3 осн. элемента могут быть отчётливо выделены, напр., в часах, в к-рых маятник или баланс служит колебат. системой, пружинный или гиревой завод - источником энергии, и, наконец, анкерный ход - механизмом, регулирующим поступление энергии из источника в систему. В ламповом генераторе колебат. системой служит контур, содержащий ёмкость и индуктивность и обладающий малым активным сопротивлением; выпрямитель (или батарея), питающий напряжением анод лампы, является источником энергии, а электронная лампа с элементом обратной связи -устройством, регулирующим поступление энергии из источника в колебат. контур.

В часах, напр., А. осуществляются след, образом (рис.). При прохождении качающегося балансира 1 через определённое положение (обычно дважды за период) спусковое устройство 2 и 3 подталкивает колесо балансира, сообщая ему энергию, необходимую для того, чтобы компенсировать потерю энергии за полпериода колебаний. Балансир часов совершает А. с амплитудой, целиком определяемой свойствами часового механизма. Однако для того, чтобы эти А. возникли, обычно нужно не только завести пружинный завод, но и слегка встряхнуть часы, т. е. сообщить начальный толчок балансиру. Т. о., часы - это в большинстве случаев автоколебат. система без самовозбуждения. В духовых инструментах продувание струи воздуха поддерживает А. столба воздуха в трубе инструмента, а в струнных смычковых инструментах А. поддерживаются силой трения, действующей между смычком и струной.

Спусковой механизм часов: 1 - балансир; 2 - анкерная вилка; 3 - спусковое колесо.

Чтобы колебания были незатухающими, поступающая из источника в систему энергия должна компенсировать потери энергии в самой системе. Такая компенсация происходит в целом за период колебаний; но в одни части периода поступающая энергия может превышать потери в системе, в другие, наоборот, потери в системе могут превышать поступление энергии в неё. То значение амплитуды колебаний, при к-ром происходит компенсация потерь в целом за период, и является стационарным (не изменяющимся со временем) значением амплитуды А. Такой баланс поступления и потерь энергии оказывается возможным только при определённых значениях амплитуды А. (в простейших случаях только при одном значении).

Обычно при значениях амплитуды колебаний, меньших стационарной, поступление энергии в систему превышает потери в ней, вследствие чего амплитуда колебаний возрастает и достигает стационарного значения. В частности, если в систему поступает энергия больше, чем теряется в ней при сколь угодно малых амплитудах колебаний, то происходит самовозбуждение колебаний. Наоборот, при амплитудах, превышающих стационарное значение, потери энергии в системе обычно превышают поступление энергии из источника, вследствие чего амплитуда колебаний уменьшается и также достигает стационарного значения. Т. о., отклонения амплитуды А. в ту или другую сторону от стационарного значения затухают, и А. в этих случаях устойчивы.

Однако в нек-рых случаях отклонение амплитуды колебаний от стационарного значения и нарушение компенсации потерь энергии в системе приводят к дальнейшему росту отклонений амплитуды от стационарного значения. Это будет иметь место, если при уменьшении амплитуды потери начинают преобладать над поступлением энергии или, наоборот, при увеличении амплитуды поступление энергии начинает преобладать над потерями. В этом случае А. неустойчивы, и, вследствие наличия во всякой реальной системе неизбежных возмущений и толчков, такие А. длительное время существовать не могут.

Форма А. может быть различной. Если добротность колебательной системы велика, т. е. потери энергии в колебат. системе относительно малы, то для поддержания А. в систему за период должно поступать количество энергии, очень малое по сравнению с полной энергией колебат. системы. При этом характер происходящих процессов почти не изменяется по сравнению с тем, как они протекали бы в системе без поступления энергии. В этом случае период и форма А. будут очень близки к периоду и форме собственных колебаний колебат. системы; если собств. колебания в системе по форме близки к гармоническим, то А. также близки к гармоническим.

В систему с малой добротностью для поддержания А. должна поступать энергия, уже не малая по сравнению с энергией системы, что может существенно изменить характер происходящих в ней процессов; в частности, форма А. может значительно отличаться от синусоидальной. Если за период А. рассеивается вся накопленная в системе энергия (т. е. система уже не колебательная, а апериодическая), то А. могут очень сильно отличаться по форме от синусоидальных, т. е. превратиться в т. н. релаксационные колебания.

Возможность установления баланса энергии только при определённых значениях амплитуды А. обусловлена наличием в системе т. н. нелинейного элемента, свойства к-рого зависят от состояния системы (напр., сопротивления, к-рое зависит от приложенного к этому сопротивлению напряжения).

Лит.: Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Теодорчик К. Ф., Автоколебательные системы, 3 изд., М.- Л., 1952. С. Э. Хайкин.

АВТОКОЛЛИМАТОР (от авто... и collimo, вместо правильн. лат. collineo - направляю прямо), оптико-механич. прибор для точных угловых измерений. Может быть применён для контроля прямолинейности и плоскостности направляющих (напр., станка).

АВТОКОЛЛИМАЦИЯ, ход световых лучей, при к-ром они, выйдя из нек-рой части оптич. системы (коллиматора) параллельным пучком, отражаются от плоского зеркала и проходят систему в обратном направлении. Если зеркало перпендикулярно оси системы, то излучающая точка, лежащая в фокальной плоскости на этой оси, совмещается с её изображением в отражённых лучах; поворот зеркала приводит к смещению изображения. Этим широко пользуются в оптич. приборах (напр., в спектральных) для выверки параллельности поверхностей оптич. деталей (напр., зеркал в оптических квантовых генераторах), контроля параллельности перемещений (напр., ползунов, суппортов и т. п.).

А. М.Бонч-Бруевич.

АВТОКОРМУШКА, см. Кормушка.

АВТОКРАТИЯ (or греч. autokrateia - самовластие, самодержавие), форма правления, представляющая собой неограниченное и бесконтрольное полновластие одного лица в гос-ве (см. также Деспотия, Тирания, Абсолютизм). А. являлись деспотич. монархии Др. Востока, тиранич. правления в нек-рых др.-греч. гос-вах, Римская и Византийская империи, абсолютные монархии нового времени. ПонятиеАупотреблялось также для обозначения неограниченных полномочий в к.-л. особой сфере гос. деятельности. В совр. лит-ре понятиемАобозначаются и политич. режимы, характеризующиеся неконтролируемой представительными органами верховной властьюлидера; (фюрера, дуче, кау-дильо). См. также Авторитаризм, Тоталитарное государство.

B.C. Нерсесянц.

АВТОЛЕСОВОЗ, автомобиль для перевозки пиломатериалов, уложенных пакетами. Особенность конструкции А.- высоко поднятая рама с угловыми стойками, опирающимися через пружинные рессоры на ходовые колёса. А. наезжает на пакет, уложенный на подкладки; захватные устройства, расположенные под рамой, поворачиваясь вокруг горизонт, оси, сближаются и перемещаются при помощи гидропривода по вертикали, приподнимая пакет до прижима его к нижней поверхности рамы. Разгрузка А. производится в обратном порядке.

Н. Н. Куницкий,

АВТОЛИЗ, аутолиз (от авто... и греч. lysis - разложение, распад), самопереваривание тканей животных, растений и микроорганизмов. При А. происходит распад клеточных белков, углеводов, жиров под влиянием присутствующих в клетках гидролитич. ферментов. Прижизненный А. наблюдается в очагах омертвения, в клетках злокачественных новообразований. А. имеет место при разложении трупов. В растениях А. происходит при отмирании клеток в результате влияния низкой темп-ры, высушивания, действия ядовитых веществ (хлороформа, толуола и др.), а также при механич. измельчении тканей. А. микробных клеток наблюдается при старении микробной культуры, повреждении микроорганизмов физ., хим. или биол. агентами. А. имеет место также при некоторых технологич. процессах, при ферментации табака, чая, силосовании кормов и др. Н.П. Мешкова.

АВТОЛИТОГРАФИЯ, вид литографии, при котором изображение на камень наносит художник-автор, в отличие от репродукционной литографии, где оригинал перерисовывает на камень мастер-литограф.

АВТОЛЫ [от авто(мобиль) и лат. ol(eum) - масло], см. Моторные масла.

АВТОМАТ (от греч. automates - самодействующий), 1) самостоятельно действующее устройство (или совокупность устройств), выполняющее по заданной программе без непосредственного участия человека процессы получения, преобразования, передачи и использования энергии, материала и информации. А. применяются для повышения произво-дительности и облегчения труда человека, для освобождения его от работы в труднодоступных или опасных для Жизни условиях.

Самодействующие устройства известны были ещё в глубокой древности. С их помощью жрецы создавали у слепо верующих людей представления очудесах, якобы творимых божественной силой.

В эпоху античности и в ср. века неоднократно создавались устройства, имитирующие движения живых существ без видимого участия движущей силы. Прак-тич. значения такиеавтоматы; не имели, но, оставаясь занимательными игрушками, они оказались своего рода предшественниками совр. А. Существенно повлияло на развитие А. изобретение часов с пружинным приводом (П. Хен-лейн в Германии, 16 в.) и особенно маятниковых часов (X. Гюйгенс в Голландии, 1657), в которых впервые использовались принципы и отд. механизмы, получившие впоследствии широкое применение в А.

Однако первое пром. использование А. относится к 18 в.- периоду пром. революции, когда средства труда приобрели такую материальную форму существования, к-рая обусловила замену чело-веч, силы силами природного происхождения и рутинных приёмов в организации труда сознательным использованием накопленного опыта.

К автоматич. устройствам этого времени, имевшим в осн. экспериментальный характер, относятся: в России - автоматич. суппорт Андрея Нартова для токарно-копировальных станков (20-е гг. 18 в.), поплавковый регулятор уровня воды в котле И. И. Ползу нова (1765), в Англии - центробежный регулятор Дж. Уатта (1784), во Франции - ткацкий станок с программным управлением от перфокарт для выработки крупноузорчатых тканей Ж. Жаккара (1808) и др.

Автоматич. устройства 18-19 вв. основывались на принципах и методах клас-сич. механики. Развитие электротехники, практич. использование электричества в воен. деле, связи и на тран