БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

БЕРНШТЕЙНИАНСТВО, одна из первых разновидностей ревизионизма.
БИОЛОГИЧЕСКИЕ СТАНЦИИ, научно-исследовательские учреждения.
БОРТОВАЯ РАДИОСИСТЕМА КОСМИЧЕСКОЙ СВЯЗИ, комплекс радиотехнич. аппаратуры.
БУШПРИТ, бугшприт (англ, bowsprit.
ВОСТОЧНО-КАРПАТСКАЯ ОПЕРАЦИЯ 1944.
ВЫСШАЯ АТТЕСТАЦИОННАЯ КОМИССИЯ (ВАК), государственный орган.
ГАРАНТИИ ПРАВ ГРАЖДАН, условия и средства.
ГИПЕРБОЛОИДНАЯ ПЕРЕДАЧА, зубчатая передача для осуществления вращения.
ГОАЦИН (Opisthocomus hoatzin), птица, единственный вид.
ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА, аналого-цифровая вычислительная машина.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

н/м2 (1-2 мм рт. cm.)] или при разложении нитридов В, Ti, Mg и Са, а также при электрич. разрядах в воздухе может образоваться активный А., представляющий собой смесь молекул и атомов А., обладающих повышенным запасом энергии. В отличие от молекулярного, активный А. весьма энергично взаимодействует с кислородом, водородом, парами серы, фосфором и некоторыми металлами.

А. входит в состав очень многих важнейших органич. соединений (амины, аминокислоты, нитросоединения и др.).

Получение и применение. В лаборатории А. легко может быть получен при нагревании концентрированного раствора нитрита аммония: NH4NO2 = N2 + 2H2O. Технич. способ получения А. осн. на разделении предварительно сжижен-ного воздуха, к-рый затем подвергается разгонке (см. Газов разделения).

Осн. часть добываемого свободного А. используется для пром. производства аммиака, к-рый затем в значит, количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д. Помимо прямого синтеза аммиака из элементов, пром. значение для связывания А. воздуха имеет разработанный в 1905 цианамидный метод, осн. на том, что при 1000°С карбид кальция (получаемый накаливанием смеси извести и угля в электрич. печи) реагирует со свободным А.: СаС2 + N2 = CaCN2 + С. Образующийся цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака: CaCN2+3H2O = CaCO3+2NH3.

Свободный А. применяют во многих отраслях пром-сти: как инертную среду при разнообразных химич. и металлур-гич. процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д. Жидкий А. находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный А. в сжатом виде - в баллонах. Широко применяют многие соединения А. Произ-во связанного А. стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.

Лит.: Некрасов Б. В., Основы общей химии, т. 1, М., 1965; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Химия и технология связанного азота, [М.- Л.], 1934; КХЭ, т. 1, М.,1961.

АЗОТ В ОРГАНИЗМЕ, один из осн. биогенных элементов, входящих в состав важнейших веществ живых клеток - белков и нуклеиновых кислот. Однако количество А. в о. невелико (1-3% на сухую массу). Находящийся в атмосфере молекулярный азот могут усваивать лишь нек-рые микроорганизмы и сине-зелёные водоросли (см. Азотфиксация). Значит. запасы азота сосредоточены в почве в форме различных минеральных (аммонийные соли, нитраты) и органич. соединений (азот белков, нуклеиновых к-т и продуктов их распада, т. е. ещё не вполне разложившиеся остатки растений и животных). Растения усваивают азот из почвы как в виде неорганич., так и нек-рых органич. соединений. В природных условиях для питания растений большое значение имеют почвенные микроорганизмы (аммонификаторы), которые минерализуют органич. азот почвы до аммонийных солей. Нитратный азот почвы образуется в результате жизнедеятельности открытых С. Н. Виноград-ским в 1890 нитрифицирующих бактерий, окисляющих аммиак и аммонийные соли до нитратов. Часть усвояемого микроорганизмами и растениями нитратного азота теряется, превращаясь в молекулярный азот под действием денитрифицирующих бактерий. Растения и микроорганизмы хорошо усваивают как аммонийный, так и нитратный азот, восстанавливая последний до аммиака и аммонийных солей. Микроорганизмы и растения активно превращают неорганич. аммонийный азот в органич. соединения азота - амиды (аспарагин и глу-тамин) и аминокислоты. Как показали Д. Н. Прянишников и В. С. Буткевич, азот в растениях запасается и транспортируется в виде аспарагина и глутамина. При образовании этих амидов обезвреживается аммиак, высокие концентрации к-рого токсичны не только для животных, но и для растений. Амиды входят в состав мн. белков как у микроорганизмов и растений, так и у животных. Синтез глутамина и аспарагина путём ферментативного амидирования глутамвиовой и аспарагиновой к-т осуществляется не только у микроорганизмов и растений, но в определённых пределах и у животных.

Синтез аминокислот происходит путём восстановит, аминирования ряда алъде-гидокислогп и кетокислот, возникающих в результате окисления углеводов (В. Л. Кретович), или путём ферментативного переаминирования (А. Е. Браунштейн и М. Г. Крицман, 1937). Конечными продуктами усвоения аммиака микроорганизмами и растениями являются белки, входящие в состав протоплазмы и ядра клеток, а также отлагающиеся в виде запасных белков. Животные и человек способны лишь в огранич. мере синтезировать аминокислоты. Они не могут синтезировать 8 незаменимых аминокислот (валин, изолейцин, лейцин, фенилаланин, триптофан, метионин, треонин, лизин), и потому для них основным источником азота являются белки, потребляемые с пищей, т. е., в конечном счёте,- белки растений и микроорганизмов.

Белки во всех организмах подвергаются ферментативному распаду, конечными продуктами к-рого являются аминокислоты. На следующем этапе в результате дезаминирования органич. азот аминокислот вновь превращается в неорганич. аммонийный азот. У микроорганизмов и особенно у растений аммонийный азот может использоваться для нового синтеза амидов и аминокислот. У животных обезвреживание аммиака, образующегося при распаде белков и нуклеиновых к-т, осуществляется путём синтеза мочевой к-ты (у пресмыкающихся и птиц) или мочевины (у млекопитающих, в т. ч. и у человека), к-рые затем выводятся из организма. С точки зрения обмена азота растения, с одной стороны, и животные (и человек), с другой, отличаются тем, что у животных утилизация образующегося аммиака осуществляется лишь в слабой мере - большая часть его выводится из организма; у растений же обмен азота "замкнут" - поступивший в растение азот возвращается в почву лишь вместе с самим растением.

Лит.: Прянишников Д. Н., Азот в жизни растений и в земледелии СССР.М,- Л.,1945; Браунштейн А. Е., Главные пути ассимиляции и диссимиляции азота у животных, "Бахс>вские чтения", 1957, т.12; Кретович В. Л., Биохимия автотроф-ной ассимиляции азота, там же, 1961, т. 16; Фердман Д. Л., Биохимия, 3 нзд.,М., 1966; Кретович В. Л. и Каган 3. С., Усвоение и превращение азота у растений, в кн.: Физиология сельскохозяйственных растений, т. 2, М., 1967.

В. Л. Кретович, 3. С. Каган.

АЗОТА О КИСЛЫ, соединения азота с кислородом. Известны N2O, NO, N2O3, NO2 (и его димер N2O4), N2O5; есть сведения о существовании NO3, не выделенного в свободном состоянии. При высокой темп-ре в пламени вольтовой дуги, а в природе - при электроразряде из смеси азота с кислородом образуется окись азота NO, к-рая при охлаждении переходит в NO2. Другие А. о. получают косвенным путём. N2O5 - твёрдое вещество; остальные окислы при обычных условиях газообразны.
Закись азота N2O - бесцветный газ со слабым приятным запахом и сладковатым вкусом; вдыхание смеси воздуха с N2O вызывает состояние, напоминающее опьянение (отсюда название - веселящий газ). Плотность при 0°С и 101 325 н/м2 (760 мм рт. ст.) 1,9804 кг/м3, tкип - 89.50C, tпла-102.40С 1. объём N2O при 5°С растворяет 1,048 объёма N2O. Химически N2O с водой, растворами кислот и щелочей не реагирует, кислородом не окисляется. Выше 500°С разлагается: 2N2O = 2N2 + O2; поэтому при повышенных темп-pax действует как сильный окислитель и поддерживает горение. Получают N2O термич. разложением нитрата аммония: NH4NO3=N2O+ + 2Н2О. В медицине служит для общей анестезии. Окись азота NO - бесцветный газ, буреющий при соприкосновении с воздухом вследствие окисления до NO2. Плотность при 0°С и 101 325 н/м2 (760 мм рт. ст.) 1,3402 кг/м3, t -151,8°С, t КИП -163,6°С. В воде мало растворима (0,0738 объёма в 1 объёме Н2О при 0°С). С водой, кислотами и щелочами химически не взаимодействует. Образует многочисленные продукты присоединения, например нитрозилхлорид NOC1. Получают NO действием разбавленной азотной к-ты на некоторые металлы, напр.: 3Cu + 8HNO3 = = 3Cu(NO3)2 + 4H2O + 2NO. Окись азота - важный полупродукт окисления аммиака при получении азотной кислоты. Азотистый ангидрид (трёхокись азота) N2O3 - в обычных условиях неустойчивое соединение. Разлагается уже при 0°С: N2O3<->NO + NO2; ок. 3,5°С кипит с разложением, при 25°С содержит только 10% недиссоциированного N2O3- При низкой темп-ре может быть получен в виде тёмно-голубой жидкости, при сильном охлаждении - светло-голубой массы с tпл -102 °С. С водой образует азотистую кислоту: N2O3 + Н2О = 2HNO2, со щелочами - соли (см. Нитриты). N2O3 получают по реакции: N2O4 + + 2NO = 2N2O3; практич. применения не находит.

Двуокись азота NO2 - бурый газ с удушливым запахом, при 21,15 0С - буро-красная жидкость, бледнеющая при дальнейшем охлаждении из-за образования четырёхокиси азота N2O4, tотв -11,2°С. Взаимодействует с водой с образованием азотной к-ты и окиси азота: 3NO2 + Н2О = 2HNO3 + NO; со щелочами образует нитраты и нитриты. Двуокись азота - сильный окислитель; в токе NO2 энергично сгорают уголь, сера, фосфор, органические соединения. В пром-сти NO2 получают окислением NO. при производстве азотной к-ты, в лаборатории - термич. разложением некоторых нитратов: 2Pb(NO3)2 = 2PbO + + О2 + 4NO2. Применяют NO2 как нитрующий агент (см. Нитрование органических соединений). Азотный ангидрид (пяти-окись азота) N2O5, - бесцветные очень летучие кристаллы. Крайне неустойчив и взрывоопасен. Взаимодействует с водой, давая азотную к-ту: N2O5 + Н2О = 2HNO3, со щелочами образует соли - нитраты, В лаборатории получают по реакции: 2HNO3 + Р2О5 = = N2O5 + 2HPO3. Практич. применения не находит. Все А. о. физиологически активны.

Лит. см. при ст. Азот, Азотная кислота.

АЗОТИРОВАНИЕ, насыщение поверхности металлич. деталей азотом с целью повышения твёрдости, износоустойчивости, предела усталости и коррозионной стойкости. А. подвергают сталь, титан, нек-рые сплавы, наиболее часто - легиров. стали, особенно хромоалюминие-вые, а также сталь, содержащую ванадий и молибден.

Азотирование стали происходит при t 500-650°С в среде аммиака. Выше 400°С начинается диссоциация аммиака по реакции Образовавшийся атомарный азот диффундирует в металл, образуя азотистые фазы. При темп-ре А. ниже 591 °С азотированный слой состоит из трёх фаз (рис.): - нитрида - нитрида -. азотистого феррита, содержащего ок. 0,01% азота при комнатной темп-ре. При темп-ре А. 600-650° С возможно образование ещё и -фазы, к-рая в результате медленного охлаждения распадается при 591°С на эвтектоид . Твёрдость азотиров. слоя увеличивается до HV = 1200 (соответствует 12 Гн/мг) и сохраняется при повторных нагревах до 500-600°С, что обеспечивает высокую износоустойчивость деталей при повышенных темп-pax. Азотированные стали значительно превосходят по износоустойчивости цементированные и закалённые стали. А.- длительный процесс, для получения слоя толщиной 0,2-0,4 мм требуется 20-50 ч. Повышение темп-ры ускоряет процесс, но снижает твёрдость слоя. Для защиты мест, не подлежащих А., применяются лужение (для кон-струкц. сталей) и никелирование (для нержавеющих и жаропрочных сталей). Для уменьшения хрупкости слоя А. жаропрочных сталей иногда ведут в смеси аммиака и азота.

Азотирование титановых сплавов проводится при 850-950°С в азоте высокой чистоты (А. в аммиаке не применяется из-за увеличения хрупкости металла).

При А. образуется верхний тонкий нитридный слой и твёрдый раствор азота в а-титане. Глубина слоя за 30 ч - 0,08 мм с поверхностной твёрдостью HV = = 800-850 (соответствует 8-8,5 Гн/м2). Введение в сплав нек-рых легирующих элементов (А1 до 3%, Zr 3-5% и др.) повышает скорость диффузии азота, увеличивая глубину азотиров. слоя, а хром уменьшает скорость диффузии. А. титановых сплавов в разреженном азоте [100-10 н/м2 (1-0,1 мм рт. ст.)] позволяет получать более глубокий слой без хрупкой нитридной зоны.

А. широко применяют в пром-сти, в т. ч. для деталей, работающих при t до 500-600 °С (гильз цилиндров, коленчатых валов, шестерён, золотниковых пар, деталей топливной аппаратуры и др.).

Лит.: Минкевич А. Н., Химико-термическая обработка металлов и сплавов, 2 изд., М., 1965; Гуляев А. П., Металловедение, 4 изд., М., 1966.

Д. И. Браславский.

АЗОТИСТАЯ КИСЛОТА, HNO2, одноосновная, нестойкая, довольно слабая кислота, существующая только в разбавленных холодных водных растворах. Структурная формула НО - N = О. Константа диссоциации А. к. 4,5*10-4 при 18°С. Образуется наряду с азотной к-той при растворении NO2 в воде: 2NO2 + Н2О = HNO2 + HNO3. При нагревании и действии сильных к-т или окислителей А. к. разлагается с образованием окиси азота: 3HNO2 = HNO3 + + 2NO + Н2О. Восстановлением А. к. могут быть получены N2O,NO, NH2OH, NH3 и др. Соли А. к. (нитриты) получают восстановлением нитратов. Наиболее важное свойство А. к.- способность к диазотированию ароматич. аминов.

Поэтому в производстве азокрасителей широко применяют натрия нитрит NaNO2; при действии на эту соль кислот образуется свободная А. к.:

NaNO2+HCI=NaCI+HNO2. А. к. и её соли при попадании внутрь ядовиты. Профессиональные отравления редки. Нитрит натрия применяют в медицине при стенокардии и спазмах сосудов головного мозга (см. Сосудорасширяющие средства).

АЗОТИСТОВОДОРОДНАЯ КИСЛОТА, азоимид, HN3, соединение азота с водородом, бесцветная летучая жидкость с резким запахом. Структурная формула Н - N =N =N. Плотность ИЗО кг/м3, t 37° С, taa - 80° С. Безводная А. к. при нагревании или при сотрясении сосуда взрывается, разлагаясь на азот и водород; в разбавленных водных растворах устойчива. В водных растворах А. к. диссоциирует на ионы Н+ и N-3, причём по силе она близка к уксусной. Помимо кислотной функции, для А. к. характерна и окислительная: смесь А. к. с крепкой соляной кислотой растворяет золото и платину, т. е. ведёт себя аналогично царской водке. А. к. получают действием на её соли разбавл. серной кислоты. Прак-тич. применение имеют только соли А. к. - азиды.

АЗОТИСТОЕ РАВНОВЕСИЕ, состояние животного организма, при к-ром количество выводимого (с мочой и калом) азота равно кол-ву азота, получаемому с пищей. Взрослый организм в норме находится в состоянии А. р. Средняя потребность взрослого человека в азоте - 16 г в сутки, что соответствует 100 г белка. Если кол-во поступающего с пищей азота ниже белкового минимума, то организм начинает разрушать белки собственного тела и А. р. нарушается (отрицательный азотистый баланс: кол-во выводимого азота больше поступающего с пищей). Длительный недостаток белка (см. Голодание) ведёт к истощению. Растущий организм нуждается в положительном азотистом балансе, т. е. в превышении кол-ва вводимого азота над кол-вом выводимого из организма.

АЗОТИСТОКИСЛЫЕ СОЛИ, соли азотистой кислоты HNO2. Более употребительное назв. А. с.- нитриты. См. также натрия нитрит.

АЗОТИСТЫЕ ИПРИТЫ, см. Иприт.

АЗОТИСТЫЙ АНГИДРИД, N2O3, см. Азота окислы.

АЗОТНАЯ КИСЛОТА, HNO3, одноосновная сильная кислота, при обычных условиях бесцветная жидкость; один из наиболее важных продуктов химич. пром-сти. Структурная формула:

Физические и химические свойства. Плотность безводной А. к. 1522 кг/м3, tпл -41,15°С, tкип 84° С. С водой смешивается во всех отношениях, причём образует азеот-ропную смесь, содержащую 69,2% А. к. с t 121,8° С. Известны кристаллогидраты HNO3*H2O с tпл- 37,85° С и HNO3*3H2Oc tпл-18,5° С. В отсутствии воды А. к. неустойчива, разлагается на свету с выделением кислорода уже при обычных темп-pax (4HNO3 = 4NO2 + + 2Н2О + О2), причём выделяющейся двуокисью азота окрашивается в жёлтый, а при высоких концентрациях NO2 - в красный цвет. А. к.- сильный окислитель, окисляет серу до серной к-ты, фосфор - до фосфорной к-ты. Только золото, тантал и нек-рые платиновые металлы не реагируют с А. к. С большинством металлов А. к. взаимодействует преим. с выделением окислов азота: 3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + + 4Н2О. Нек-рые металлы, напр, железо, хром, алюминий, легко растворяющиеся в разбавленной А. к., устойчивы к воздействию концентриров. А. к., что объясняется образованием на поверхности металла защитного слоя окисла. Такая особенность позволяет хранить и перевозить концентриров. А. к. в стальных ёмкостях. Смесь концентриров. А. к. и соляной к-ты (1:3), наз. царской водкой, растворяет даже золото и платину. Органич. соединения под действием А. к. окисляются или нитруются, причём в последнем случае остаток А. к.- нитрогруппа - NO+2 замещает в органич. соединениях водород (см. Нитрование). Соли А. к. наз. нитратами, а соли с Na, К, Са, NH+4 также селитрами.

Получение и применение. В 13 в. было описано получение А. к. нагреванием калиевой селитры с квасцами, железным купоросом и глиной. В сер. 17 в. И. Р. Глаубер предложил получать А. к. при умеренном (до 150°С) нагревании калиевой селитры с концентриров. серной к-той: KNO3 + H2SO4 = = HNO3 + KHSO4. До нач. 20 в. этот способ применяли в пром-сти, заменяя калиевую селитру более дешёвой природной чилийской селитрой NaNO3.

Современный способ производства А. к. основан на каталитич. окислении аммиака кислородом воздуха. Осн. стадии процесса: контактное окисление аммиака до окиси азота: 4NHg + 5О2 = = 4NO + 6Н2О; окисление окиси азота до двуокиси и поглощение смеси так называемых "нитрозных газов" водой: 2NO + О2 = 2NO2; 3NO2 + H2O =2HNO3 + NO. Смесь аммиака (10-12% ) с воздухом пропускают через нагретую до 750-900° С сетку катализатора, которым служат сплавы платины - тройной (93% Pt, 3%Rh, 4% Pd) или двойной (90-95% Pt, 10-5%Rh). Используют также двухступенчатый катализатор (1-я ступень - платиноидная сетка, 2-я - неплатиновый катализатор), что позволяет на 25-30% сократить расход платины. Время контакта воздушно-аммиачной смеси с катализатором не должно превышать 1 мсек, иначе образовавшаяся окись азота разлагается. Вторая стадия процесса - окисление NO до NO2 и растворение NO2 в воде - может быть проведена при атмосферном давлении, под давлением до 1 Мн/м2 (10 кгс/см2) или комбинированным способом, при к-ром под давлением происходит только поглощение нитрозных газов водой. Получают А. к. с концентрациями 45-49% или (при использовании давления) 55-58% . Дистилляцией таких растворов может быть получена А. к. азеотропного состава. Более концентрированную кислоту (до 100%) получают перегонкой растворов А.к. с коицентриров. H2SO4 и